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ABSTRACT
Reconstructing the complex behavior of chaotic dynamical systems
from time series is a challenging task, due to the high sensitivity
to initial conditions and other factors. In this paper, we formulate
this issue as an optimization problem, which is addressed through
a bio-inspired swarm intelligence technique: the cuckoo search
algorithm with Lévy flights. The method is applied to reconstruct
several periodic and chaotic behaviors of the Hénon map, a popular
two-dimensional chaotic map. Our graphical and numerical results
show that the proposed method is able to obtain suitable values
for the parameters under optimization and reconstruct different
system behaviors with good accuracy.
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1 INTRODUCTION
Dynamical systems provide a powerful mathematical framework for
studying the time-dependent behavior of many systems that can be
described through a set of rules or equations [2, 25]. This make them
a valuable tool in understanding, predicting and controlling real-
world phenomena across several scientific and engineering fields.
Dynamical systems can display a wide range of behaviors (steady-
states, periodic oscillations, chaotic patterns, bifurcations, crises,
and more) and often exhibit attractors, representing stable states
where the system tends to evolve over time [15]. This evolution can
be analyzed through the trajectories of the system variables, called
orbits [1, 3]. Analyzing such orbits is essential for understanding
dynamical systems, but it poses a significant challenge, particularly
for chaotic systems [12, 26]. Various extensions and alternative
techniques have been explored in the literature to address this issue
[9, 20], including autoencoders for learning embeddings [16, 22],
and variational Bayes filters [17]. Recently, artificial intelligence
approaches have been applied to tackle this issue, including kernel
methods [23], support vector machines [21], neural networks [13],
machine learning [5, 18], and deep learning [19].

This paper addresses the problem of reconstructing periodic
and chaotic orbits of dynamical systems using time series data. Of
course, this problem is too general to be solved in just a single paper.
In this work, we focus on the case of low-dimensional discrete
dynamical systems. The problem is formulated as a continuous
nonlinear optimization problem, which is solved using the cuckoo
search algorithmwith Lévy flights, a popular nature-inspired swarm
intelligence method for optimization. To analyze the performance
of the proposed method, it is applied to the reconstruction of several
periodic and chaotic behaviors of a two-dimensional map called
the Hénon map. The experimental results show that the method
performs well in reconstructing different system behaviors with
good accuracy.

The structure of this paper is as follows: in Sect. 2 we describe the
optimization problem along with the cuckoo search algorithm, the
swarm intelligence technique used in this work. Sect. 3 describes
the computational experiments, introducing the example used in
this paper and the implementation details. The experimental results
are discussed in Sect. 4. The conclusions and some ideas for future
work in the field in Sect. 5 close the paper.
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2 THE PROPOSED METHOD
2.1 Problem Statement
The problem to be solved can be stated as follows: as the initial
input, we are given a collection of two-dimensional data points,
{𝑥𝑛, 𝑦𝑛}𝑛=1,...,𝑁 assumed to come from a periodic or chaotic or-
bit of an unknown chaotic dynamical system𝑀 . The objective is
to recover the periodic or chaotic orbit of the chaotic map 𝑀 . In
this paper, we assume that the map 𝑀 can be expressed as a lin-
ear combination of bivariate vector functions from a given family
{𝜙1 (𝑢, 𝑣), 𝜙2 (𝑢, 𝑣), . . . , 𝜙𝑚 (𝑢, 𝑣)}, i.e.:

𝑀 (𝑢, 𝑣) =
𝑚∑︁
𝑘=1

𝜆𝑘𝜙𝑘 (𝑢, 𝑣) (1)

where the 𝜆𝑘 are parametric vectors to be computed. This means
that 𝑀 (𝑢𝑖 , 𝑣𝑖 ) = (𝑥𝑖 , 𝑦𝑖 ), for all 𝑖 = 1, . . . , 𝑁 . This problem can
be expressed as such of computing the parameters of the linear
combination that minimize the error between the original data and
the predicted data according to the selected mathematical model.
This leads to the functional:

Ξ =𝑚𝑖𝑛

[
𝑁∑
𝑖=1

| |𝑀 (𝑢𝑖 , 𝑣𝑖 ) − (𝑥𝑖 , 𝑦𝑖 ) | |2
]

=𝑚𝑖𝑛

[
𝑁∑
𝑖=1

�������� 𝑚∑
𝑘=1

𝜆𝑘𝜙𝑘 (𝑢𝑖 , 𝑣𝑖 ) − (𝑥𝑖 , 𝑦𝑖 )
��������

2

] (2)

which is a nonlinear continuous optimization problem as long as
the functions 𝜙𝑘 (𝑢, 𝑣) are nonlinear. In this work, we consider the
family of quadratic polynomial functions. Therefore, the model𝑀
of Eq. (1) can be expressed as:

𝑀 (𝑢, 𝑣) = 𝜆1 + 𝜆2𝑢 + 𝜆3𝑣 + 𝜆4𝑢
2 + 𝜆5𝑣

2 + 𝜆6𝑢𝑣 (3)

To solve the minimization problem in Eqs. (2)-(3) we apply a popular
swarm intelligence approach called cuckoo search algorithm, which
is briefly described in the next section.

2.2 The cuckoo search algorithm
The minimization problem described in Sect. 2.1 is very difficult
to solve using classical mathematical techniques. Hence, the re-
searchers have turned their attention to artificial intelligence tech-
niques, which have been successfully applied to many challeng-
ing problems. In this paper, we consider a popular nature-inspired
swarm intelligence technique named cuckoo search algorithm (CSA),
introduced in 2009 by Xin-She Yang and Suash Deb to solve contin-
uous optimization problems [27, 28].

This algorithm is based on the reproductive behavior of cuckoo
birds, leading to some idealized rules as the basis for a computa-
tional optimization model. The corresponding pseudocode is shown
in Table 1. The method starts with an initial population of 𝑁𝑝 host
nests generated randomly, and runs iteratively. At each iteration
𝑡 , a cuckoo egg x𝑡

𝑖
, representing a potential solution, is selected

randomly and new solutions x𝑡+1
𝑖

replace the current ones with
a probability proportional to their fitness. This step, designed to
explore the search space, is performed more efficiently by using
Lévy flights, a type of randomwalk in which the steps are defined in
terms of the step-lengths following a certain probability distribution
given by:

x𝑡+1
𝑖 = x𝑡𝑖 + 𝛼 ⊕ 𝑙𝑒𝑣𝑦 (𝜆) (4)

Table 1: Original Cuckoo Search Algorithm with Lévy flights
proposed by Yang and Deb in [27, 28].

Algorithm: Cuckoo Search via Lévy Flights

begin
Objective function 𝑓 (x), x = (𝑥1, . . . , 𝑥𝑑 )𝑇
Generate initial population of 𝑁𝑝 host nests x𝑖
while (𝑡 < 𝑀𝑎𝑥𝑔𝑒𝑛) or (stop criterion)
Get a cuckoo (say, 𝑖) randomly
Evaluate its fitness 𝐹𝑖
Choose a nest among 𝑁𝑝 (say, 𝑗 ) randomly
if (𝐹𝑖 > 𝐹 𝑗 )

Replace 𝑗 by the new solution
end
A fraction (𝑝𝑎) of worse nests are abandoned and

new ones are built via Lévy flights
Keep the best solutions (or nests with quality solutions)
Rank the solutions and find the current best

end while
Results postprocessing and visualization

end

where the symbol ⊕ indicates the entry-wise multiplication, 𝛼 > 0
indicates the step size, and the Lévy distribution is given by:

𝑙𝑒𝑣𝑦 (𝜆) ∼ 𝑔−𝜆, (1 < 𝜆 ≤ 3) (5)

(see [27] for details). Then, the fitness of the new solution is com-
puted and compared with the value of the current one. In case of
improvement, this new solution replaces the current one. Also, a
fraction of the worse nests (determined by a probability value 𝑝𝑎 ,
a parameter of the method) is randomly removed and replaced by
new solutions to promote global exploration. Then, all solutions
are ranked according to their fitness and the best solution so far
is stored as the vector x𝑏𝑒𝑠𝑡 . This procedure is repeated iteratively
for a maximum number of iterations, another parameter of the
algorithm. The best solution at last iteration is selected as the final
solution of the optimization problem.

3 COMPUTATIONAL EXPERIMENTS
3.1 Illustrative example: the Hénon map
To analyze the performance of the proposed method, it has been
applied to some chaotic systems. However, only one illustrative
example is reported here because of limitations of space. The exam-
ple consists of the two-dimensional Hénon map, one of the most
popular examples of discrete chaotic dynamical systems [11]. It
was firstly introduced by M. Hénon in [10] as a simplified model of
the Poincaré section of a continuous dynamical system called the
Lorenz model. It is mathematically described as a 2D map:{

𝑥𝑛+1 = 1 − 𝑎𝑥2
𝑛 + 𝑦𝑛

𝑦𝑛+1 = 𝑏𝑥𝑛
(6)

This map has been extensively analyzed in several previous papers,
such as [4, 14]. In [24], a broad range of behaviors was reported as
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Figure 1: Time series for the variables 𝑥 (top) and 𝑦 (bottom)
of the Hénon map for 𝑎 = 1.4 and 𝑏 = 0.3 showing the chaotic
behavior.

a function of the parameter 𝑎, for the fixed parameter value 𝑏 = 0.3.
A classical choice for the parameter value of 𝑎 is 𝑎 = 1.4, for which
the system exhibits deterministic chaos, as shown in Fig. 1, which
displays 1,000 data points from the time series for the variables 𝑥
and 𝑦 (top and bottom pictures, respectively). Fig. 2 depictes the
corresponding two-dimensional chaotic attractor for this specific
value. Of course, other interesting behaviors can also be observed
for this system [6–8]. In particular, a periodic behavior is obtained
for the parameter value 𝑎 = 0.9, where a period-2 orbit (shown in
Fig. 3 (top-left)) is observed. Increasing the values of parameter 𝑎,
the system undergoes a period-doubling cascade, with a period-4
orbit for 𝑎 = 0.95, a period-8 orbit for 𝑎 = 1.05 and a period-16
orbit for 𝑎 = 1.055, shown in Fig. 3 (top-right), (bottom-left) and
(bottom-right), respectively.

3.2 Method and Implementation
We applied the cuckoo search algorithmwith Lévy flights, described
in Sect. 2.2, to the reconstruction of the periodic and chaotic behav-
iors described in Sect. 3.1 from time series data. To that purpose,
we need to address the following issues:

3.2.1 Population representation. To apply the cuckoo search algo-
rithm to the optimization problem described in Sect. 2.1, we need
a suitable representation for the individuals of the population. In
this work, we consider a population of 𝑁𝑝 individuals x𝑖 given by
a real-valued vector of 2𝑚 components for the parametric vectors
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Figure 2: Chaotic attractor of the Hénon map for 𝑎 = 1.4 and
𝑏 = 0.3.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-0.4

-0.2

0.0

0.2

0.4

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-0.4

-0.2

0.0

0.2

0.4

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-0.4

-0.2

0.0

0.2

0.4

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-0.4

-0.2

0.0

0.2

0.4

Figure 3: Period-doubling cascade of the Hénon map (Top-
bottom, left-right): period-2 for 𝑎 = 0.9; period-4 for 𝑎 = 0.95;
period-8 for 𝑎 = 1.05; and period-16 𝑎 = 1.055.

𝜆𝑖,𝑘 = (𝜆𝑥
𝑖,𝑘
, 𝜆

𝑦

𝑖,𝑘
), for 𝑘 = 1, . . . ,𝑚. Therefore, x𝑖 becomes:

x𝑖 = (𝜆𝑥𝑖,1, 𝜆
𝑦

𝑖,1, . . . , 𝜆
𝑥
𝑖,𝑚, 𝜆

𝑦

𝑖,𝑚
) (7)

for 𝑖 = 1, . . . , 𝑁𝑝 .

3.2.2 Parameter tuning. As it is well-known, the performance of
the metaheuristic techniques is usually affected by the choice of
suitable values for their parameters. In this context, the cuckoo
search algorithm is particularly advantageous, as it only requires
three parameters:

• the population size 𝑁𝑝 ,
• the probability 𝑝𝑎 , and
• the maximum number of iterations,𝑀𝑎𝑥𝑔𝑒𝑛 .

In this work, a population of 𝑁𝑝 = 100 host nests, representing
the number of candidate solutions for the method, is considered.
Regarding the parameter 𝑝𝑎 , after several trials, its value is empiri-
cally selected as 𝑝𝑎 = 0.25, which reduces the number of iterations
required for convergence. Finally, we select𝑀𝑎𝑥𝑔𝑒𝑛 = 10, 000 itera-
tions, which has been found enough to reach convergence of the
method in all cases.
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Figure 4: Original (blue) and reconstructed (red) periodic or-
bits of the Hénon map: (top-left) period-2;(top-right) period-
4; (bottom-left) period-8;(bottom-right) period-16.

3.2.3 Fitness function. The functional in Eq. (2), based on the Eu-
clidean distance between time series, can be used to address the
reconstruction problem considered in this paper. However, this
fitness function does not consider the size of the time series, and
hence, the longer the time series, the larger the error. In order
to take the length of time series into account, it is convenient to
consider the RMSE (root-mean-square error), given by Eq. (8):

𝑅𝑀𝑆𝐸 =

√√√
𝑁∑︁
𝑖=1

(x𝑖 − x̄𝑖 )2

𝑁
(8)

where x𝑖 and x̄𝑖 denote the observed and the predicted values
respectively, and 𝑁 indicates the sample size.

3.2.4 Computational issues. The computations in this paper have
been carried out on a PC desktop with a processor Intel Core i9
running at 3.7 GHz and with 64 GB of RAM. The source code has
been implemented by the authors in the programming language of
the popular scientific program Mathematica version 12.

4 RESULTS
The goal in this paper is to obtain suitable parametric values for
the model𝑀 according to Eq. (3) so that the observed periodic and
chaotic behaviors can be accurately reconstructed. This is achieved
through optimization according to Eq. (2). To this purpose, the
cuckoo search algorithm described in Sect. 2.2 is applied. The po-
tential solutions follow the continuous representation described in
Sect. 3.2.1 for the parameter tuning described in Sect. 3.2.2.

An important observation from our simulations is that the values
of some parameters obtained by solving the optimization problem
are quite small, meaning that their contribution to the model is not
significant, but still adding unnecessary complexity to the model.
To address this issue, we removed all terms which coefficients
are smaller than a threshold value, selected empirically as 10−2

in this paper, so that the corresponding terms of the equation are
not actually considered. In our trials we found that this strategy
improved the accuracy of the model and reduced its complexity,
so we integrated it as part of our method. With this modification,

Table 2: Best results for the non-null parameter values and
RMSE of the reconstructed periodic orbits in Fig. 4.

Period Non-null parameter values RMSE

2 𝜆𝑥1 = 0.97, 𝜆𝑥3 = 0.988, 5.1761E−2
𝜆𝑥4 = −0.93, 𝜆𝑦2 = 0.286

4 𝜆𝑥1 = 0.993, 𝜆𝑥3 = 0.992, 4.5378E−2
𝜆𝑥4 = −0.94, 𝜆𝑦2 = 0.291

8 𝜆𝑥1 = 0.994, 𝜆𝑥3 = 1.0103, 𝜆𝑥4 = −1.0573, 5.1805E−2
𝜆
𝑦

1 = 0.016, 𝜆𝑦2 = 0.275

16 𝜆𝑥1 = 1.0126, 𝜆𝑥3 = 0.996, 𝜆𝑥4 = −1.054, 2.6538E−2
𝜆
𝑦

1 = 0.0206, 𝜆𝑦2 = 0.2973

7 𝜆𝑥1 = 1.013, 𝜆𝑥3 = 1.024, 𝜆𝑥4 = −1.252, 3.5211E−2
𝜆
𝑦

1 = −0.011, 𝜆𝑦2 = 0.312

14 𝜆𝑥1 = 1.006, 𝜆𝑥3 = 1.0032, 𝜆𝑥4 = −1.3093, 4.2477E−2
𝜆
𝑦

1 = −0.027, 𝜆𝑦2 = 0.3028

the obtained reconstruction results for the periodic and chaotic
behaviors are reported in this section.

4.1 Periodic behavior reconstruction
A feasible approach to reconstruct periodic orbit from time series
can be done by using Eq. (8). However, this approach is not compu-
tationally efficient and can be further enhanced by considering only
the part of the time series once convergence is reached. In that case,
it is enough to compute the distance between the closest periodic
values of the attractors corresponding to the original and the recon-
structed models. We applied this strategy to the reconstruction of
the periodic orbits in Fig. 3. Figure 4 shows our results graphically:
the superposition of the original (in blue) and the reconstructed (in
red) periodic attractors. Note the good graphical matching between
the original and the reconstructed periodic orbits, as the periodic
points of both systems are visually very close to each other. This
shows the ability of our method to reconstruct periodic orbits with
good accuracy.

These good graphical results are also confirmed numerically.
Table 2 shows the non-null parameter values of the reconstructed
model for the periodic orbits in Fig. 4 alongwith their corresponding
RMSE values. In addition, the table reports the cases of period-7 and
period-14 orbits, which are also solved but not graphically displayed
here because of limitations of space. As shown in the table, the
RMSE is of order 10−2 for all periodic orbits in our benchmark,
thus confirming numerically the good performance of the proposed
method.

4.2 Chaotic behavior reconstruction
The reconstruction of chaotic orbits is more challenging, since the
RMSE used for periodic orbits is no suitable for this case. Due to
the strong sensitivity to initial conditions, any numerical error in
the reconstruction process might amplify over the time, so the
pairwise comparison of the time series is no longer possible here.
The solution comes from the observation that, while the original
and reconstructed time series can be shifted, so their temporal
coherence is lost, the corresponding attractors should exhibit a
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Figure 5: Superposition of the original (in blue) and recon-
structed (in red) chaotic attractor of the Hénon map.

similar (but not necessarily identical) graphical structure. Therefore,
in this case our approach consists of computing the set distance
between both attractors, which is numerically computed as the
ratio between their intersection and union sets.

We applied this strategy for the reconstruction of the chaotic
attractor in Fig. 2 with satisfactory results. Figure 5 shows the super-
position of the original (in blue) and reconstructed (in red) chaotic
attractor of the Hénon map using our approach. As the reader
can see, the original and reconstructed attractors exhibit a good
matching, even although they are not fully identical. Numerically,
the percentage of matching is 87.9% using the metric proposed in
previous paragraph. We conclude that the method performs well
also in this case and is able to reconstruct the general shape of the
chaotic attractor with good accuracy.

5 CONCLUSIONS AND FUTUREWORK
In this paper, a new method is presented to reconstruct periodic
and chaotic orbits of the 2D Hénon map from time series data. The
method is based on a popular bio-inspired metaheuristic called
cuckoo search algorithm with Lévy flights. The graphical and nu-
merical results show that the method performs well and is able
to recover the periodic and chaotic orbits of this map with good
accuracy. We can conclude that this approach is very promising
towards its applicability to this complex problem.

Regarding the ideas for future work in the field, we are interested
to explore the extension of this method to more difficult scenarios,
such as high-dimensional chaotic maps, and the case of continu-
ous dynamical systems, described by sets of ordinary differential
equations. A comparison of our results with those obtained with
other techniques, ablation analysis without the Lévy flights, and
the hybridization of our approach with a local search procedure
are also part of our future work in the field.
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