
Academic Editors: Barbara Pes and

Andrea Loddo

Received: 12 November 2024

Revised: 20 December 2024

Accepted: 31 December 2024

Published: 7 January 2025

Citation: Rajšp, A.; Fister, I., Jr.

Property Graph Framework for

Geographical Routes in Sports

Training. Information 2025, 16, 30.

https://doi.org/10.3390/

info16010030

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Property Graph Framework for Geographical Routes in
Sports Training
Alen Rajšp * and Iztok Fister, Jr.

Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška Cesta 46,
2000 Maribor, Slovenia; iztok@iztok-jr-fister.eu
* Correspondence: alen.rajsp@um.si

Abstract: Presenting real-world paths in property graphs is a complex challenge of identi-
fying and representing the properties of routes and their environments. These property
graphs serve as foundational datasets for generating smart sports training routes, where
route features such as terrain, bends, and hills critically influence the route design. This
paper outlines a method for identifying key parameters of real-world paths and encoding
them into property graphs. The proposed method has significant implications for sports
event planning, particularly in designing route-based training that meets specific athletic
challenges. The research concludes by presenting a case study in which a property graph
that enables cycling route generation was created for the country of Slovenia, and a sample
training route was generated.

Keywords: property graph; geographical maps; smart sports training; data mining; data
fusion; OpenStreetMap; digital elevation model (DEM)

1. Introduction
Humans have been creating maps and map-like structures for thousands of years [1].

The purpose of a map is to serve as a tool that helps people perceive the universe in
which they live, and maps were originally used to explain to others the location or space
experienced by the person who created the map [2]. In modern times, solutions like GPS
(global positioning system) have allowed us to combine knowledge about map making
with knowledge about our current location to allow a modern approach to navigation in
which we can know our precise location and receive instructions on where to move in real
time [3].

Maps have been tailored to the understanding of their end users, who used them
for path-finding between two locations [1]. The problem of pathfinding can be divided
roughly into three sub-problems. In the first step, we need to have knowledge about the
environment and represent an abstraction of this environment in some form. In the next
step, we must find a path that is a solution to some predetermined goal. The last step is
utilizing this solution, which involves how the end user will use this route and how it will
be represented to him.

Computers are now used to calculate and generate routes, and their conception of location
has been fundamentally different. These routing techniques depend on the domain of data that
can be used, and they include the following structures for their representation:

• Graphs [4]—are representations of concepts described by a set of nodes and edges
between them.

Information 2025, 16, 30 https://doi.org/10.3390/info16010030

https://doi.org/10.3390/info16010030
https://doi.org/10.3390/info16010030
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0003-3219-018X
https://orcid.org/0000-0002-6418-1272
https://doi.org/10.3390/info16010030
https://www.mdpi.com/article/10.3390/info16010030?type=check_update&version=2

Information 2025, 16, 30 2 of 29

• Property graphs [5] are directed, labeled multi-graphs whose specialty is that each
node or edge can have a set of property–value pairs, which describe them in detail.

• Trees [6] are hierarchically organized data structures in which each node except for
the root node has exactly one parent node; the root node has none. File systems on
computers are mostly organized in tree structures.

• Grids [7] are structures that divide the environment into a grid of equally sized cells.

Pathfinding is a well-known problem that has been solved algorithmically since
the 19th century [8]. Pathfinding algorithms are used in problem-solving in robotics [9],
logistics [10], and the everyday use of global navigation systems [11]. Using navigation is
one of the most common activities on mobile phones, with 48% of all smart mobile device
users using a mobile phone to help them navigate at least once a month in 2022 [12]. The
goal of pathfinding is addressed most commonly to finding the shortest route [13] in a
given search space, for which algorithms like Dijkstra [14], A* [15], Bellman–Ford [16],
and Floyd–Warshall [17] are used on a weighted graph. Other known problems based on
pathfinding are the vehicle routing problem [18], the traveling salesman problem [19], the
Chinese postman problem [20], the Network flow problem [21], the multi-objective shortest
path problem [22], and others.

Sometimes, we do not want to find the shortest route within a search space but a route
that fits several parameters, as is often the case in sports training planning. The preparation
of the path to be taken by an athlete for the purpose of sports training belongs to the sports
training planning phase [23].

This paper is, however, not concerned with finding solutions to pathfinding; it provides
a method for generating property graph datasets that can be used in such pathfinding
methods, particularly for generating cycling training routes. The developed solution is
concerned with the identification of individual path properties and how to represent them
in a property graph.

The scope of the problem that this paper tackles is concerned primarily with data
collection, as well as the data preprocessing phase of the data analysis process, as illus-
trated by the green brackets in Figure 1, which are sometimes regarded as the two most
important steps of data analysis [24]. The property graph serves as a precursor to graph-
based pathfinding algorithms. In real-world environments, such approaches based on
various forms of graphs have been recently used in training planning for cycling [23] and
running [25], as well as travel distance estimation [26].

Data preprocessing Model selection, training, tuning,
evaluation

Data collection

OpenStreetMap

Elevation data

Method Property graph
Evolutionary
algorithm for

routes

Figure 1. Scope of research.

Data from such graphs can enable the discovery and generation of carefully tailored
routes to best replicate the real environments the athletes face during real competitions.
From such data, athletes, and trainers can find environments similar to profiles of dif-
ferent cycling races [27] and marathons for which the planned route data are publicly
available, meaning that elevation, curviness, and surface types can be carefully replicated
in preparation for competitions.

Information 2025, 16, 30 3 of 29

The main contributions and unique values of this study are as follows: (1) presenting
a new approach to generating complex geographical properties in the form of a property
graph and (2) a method that can form a prerequisite to multi-parameter sports training
generation in real-world environments.

The remainder of this paper is organized as follows: Section 2 describes the data
collection process for property graph generation, including an analysis of data sources and
selection criteria. Section Data Processing Tools presents the tools used for data preprocessing
and manipulation, including APIs and databases for handling geographical data. Section 3
outlines the method for generating property graphs, starting with a summary of the
original method and continuing with the detailed extensions introduced in this study
(Section Extending the Original Method).

Section 4 explains how to represent path and intersection features within the property
graph framework. The results of the proposed method, including a case study focused on
Slovenia and the generation of sample cycling routes, are presented in Section 5. Section 6
provides a discussion of the findings, including the advantages and limitations of the
approach, as well as its potential applications. Finally, Section 7 concludes the paper and
suggests future research directions.

2. Data Collection for Geographical Based Property Graph Generation
To create a geographical property graph from real-world paths, a map with all the

paths and their intersections is needed, as well as any additional data that can explain these
roads further. Tools also have to be identified that allow the processing and manipulation
of these data.

Data sources that offer geographical data were identified in the first step. The analysis
of sources was focused on the data that the resources offered, as well as their licensing. In
the first step, the base dataset was selected, with the requirement that it had roads and
their intersections, that it was licensed in such a way that a dataset could be derived from it
freely, and that it had the best data possible.

The analyzed solutions that were fit for use and satisfied the requirements were
as follows: OpenStreetMap [28], US Geological Survey (USGS) National Map [29], and
Natural Earth [30], as shown in Table 1. It was determined that only OpenStreetMap [28]
offered geographical data that were available worldwide, which was why it was selected
for property graph generation.

Table 1. Analyzed sources for roads and intersections.

Source License Data

OpenStreetMap ODbL Worldwide
US Geological Survey National Map public domain United States
Natural Earth public domain Worldwide, roads only US

The OpenStreetMap is an open-source project that offers and maintains geographical
data, and it is maintained by volunteers. The base building blocks of the OpenStreetMap
data are nodes, ways, relations, and tags. Nodes are individual points of latitude and
longitude with a defined id (as shown in Figure 2 by small dots). Nodes are connected
in ways that are ordered lists of 1 to 2000 nodes that are used to represent linear features,
such as roads, rivers, buildings, and areas (as shown in Figure 2 by differently colored and
shaded parallel lines demonstrating different ways that are composed of nodes), although
an individual node can be a part of more than one way (e.g., a road intersection).

Information 2025, 16, 30 4 of 29

Figure 2. OpenStreetMap data model illustration (background source of roads and buildings: [31,32].

When more than 2000 nodes are needed to describe a feature, ways are connected with
relations; for example, a list of ways could describe a named road. All of these elements
can then be described further by tags, which are key–value elements.

One part of the missing data in databases such as OpenStreetMap is the elevation of
individual nodes. These data can be retrieved from DEMs (digital elevation models), which
are mostly square grid representations of the elevation of geographical areas (Figure 3), but
they can also be represented by triangulated irregular networks [33]. In DEMs, elevation is
measured in terms of terrain elevation and not surface elevation (e.g., trees or buildings) [34].
The resolution greatly influences errors of measurement, which is very important in hills
and mountains, where the elevation of two nearby points may vary greatly.

Low-resolution High-resolutionRelief

Figure 3. Illustration of regular grid DEM (background source: [31]).

Multiple sources of such elevation models exist, so which one to choose depends on the
area the researcher is trying to investigate and generate a property graph for. The following
datasets were identified and analyzed: ASTER [35], ETOPO [36], Copernicus [37], EU-
DEM [38], NED [29], NZ-DEM [39], and SRTM [40]. The datasets differ in their resolutions
and coverage areas, as shown in Table 2. For our purpose, we selected the EU-DEM [38]
model since we were to create a property graph of Slovenia (a country in the European
Union), so the model was deemed best suited for our purpose.

Information 2025, 16, 30 5 of 29

Table 2. Analyzed sources for digital elevation models.

Coverage Area Resolution (arc s) Resolution (m2)

ASTER Worldwide 1 ~30
ETOPO Worldwide 15 and 30 ~450 and ~900
Copernicus Worldwide 1 30 and 90
EU-DEM European Environment Agency members 1 ~25

NED North America and Mexico, high-res for
the US without Alaska 1 and 1/3 ~30 and ~10

NZ-DEM New Zealand ~0.26 8
SRTM Worldwide 1 ~30

Data Processing Tools

The tools needed refer to the manipulation and extraction of data from the two selected
datasets, notably the path and road data from OpenStreetMap and elevation data from
EU-DEM. The identified and presented solutions were required to be free and open-source,
allowing users to host them on their own servers. Additionally, they needed to have a
REST (representational state transfer) interface to facilitate API requests.

The OpenStreetMap data are stored in the XML format, which is compressed further
into protocol buffers to decrease their size [41]. To query the XML files, a specialized
API (application programming interface), Overpass API [42], can be used. This is an
API for querying and retrieving data from the OpenStreetMap database. The querying is
done using the Overpass QL (Overpass Query Language). The Overpass QL was used to
identify routes and intersections, as well as data about the routes, such as the type of road,
traffic light signalization, intersections between the routes, and coordinates of routes along
the path.

To retrieve elevation data, two well-established API solutions exist: Open Topo
Data [43] and Open Elevation API [44]. The solutions allow for querying latitude and
longitude pairs and retrieving the elevation at said points using DEM as the source. Both
are suitable for use, and we would recommend that researchers use whichever solution
they are more familiar with.

3. Comparison with the Original Method for Property Graph Generation
This property graph generation method is an improved version of the previously

presented and developed approach [45]. This section summarizes and extends the original
method to include missing complex properties.

The two key instruments for representing and understanding routes in a digital
environment are graphs and property graph structures. In layman’s terms, a graph is a
mathematical structure with a set of objects in which some pairs of objects are related [46].

In the domain of computer science, the presentation, manipulation, and querying of
graph and graph-like data are conducted with graph database systems [5].

The original method [45,47] used the OpenStreetMap [28] and EU-DEM [38] datasets
to create a property graph that represents the intersecting paths between them. The method
works roughly as follows: All the intersections of a given area are identified in the first step.
In the next step, roads between the intersections are identified, and bidirectional graph
edges are created in the last step. The resulting property graph represents all intersections as
nodes and roads between them as edges, as shown in Figure 4. The edges are directed and
created twice because traveling from Nx to Ny is not the same as traveling from Ny to Nx.

The processed properties of edges are shown in Table 3. The ascent and descent were
processed using the combination of latitude–longitude pairs of the path and DEM data.
The road type refers to OpenStreetMap tag highway.

Information 2025, 16, 30 6 of 29

Table 3. Path/edge properties.

Attribute Description Example Value

Ascent Ascent in meters 71
Descent Descent in meters 7
Distance Distance in meters 328.22
Type Road type Track
Intersection-AB Edge from - to node ids 4893616681–4893616518

The extracted properties of intersections are shown in Table 4. The node_id and way
ids refer to the OpenStreetMap properties of the nodes.

Table 4. Intersection/node properties.

Property Description Examples

Latitude Latitude 465592238
Longitude Longitude 156378701
Node id node id 305882164
Way ids Way ids the node belongs to [27859724, 247410448]

Nx NyEj

Ei

Nodes → Nx, Ny

Edges → Ei, Ej

Figure 4. Property graph of intersections (nodes) and roads (edges) (background source: [31]).

The flaws of the (original) method are that the properties of the edges do not include
any data regarding the surface of the road (e.g., asphalt, tiles, . . .), the curvature of the
road (e.g., how much the road turns), and how hilly it is, which means whether the ascent
occurs in a continuous fashion or whether there is a large hill and then a flat expanse.
One serious drawback is also that it does not take into account the bends at intersections
because crossing the intersection is usually not the same as making a turn. Also, left turns
(in right-hand-side driving countries) are harder to achieve due to oncoming traffic than
right turns.

Extending the Original Method

The original method allows for the creation of a basic property graph, which was
extended greatly in this proposal. This section will summarize the differences between the
original method and show which new properties were introduced in the property graph.
The original property graph contained only the intersection properties presented in Table 4
and the path properties presented in Table 3. The properties that remained unchanged in
the nodes (intersections) were latitude, longitude, and node id. Only the ascent and descent
properties remained unchanged in the property graph’s edge (path) elements.

The nodes were updated, and individual intersections were split into multiple nodes
to include the intersection angles of the nodes. The properties that were introduced to
nodes were node elevation and whether the intersection contained traffic signals or not; the

Information 2025, 16, 30 7 of 29

final version of the intersection element is shown below in Table 5, displaying the newly
added properties.

Table 5. Intersection/node properties of the updated method.

Property Description New

Latitude Latitude −
Longitude Longitude −
Node id OpenStreetMap node id −
Elevation Elevation in meters +
Traffic signals Does the node contain traffic lights +

The calculation of edge distance was updated to increase accuracy, and new properties
of curviness, hilliness, and the number of traffic signals on the paths were introduced, as
shown in Table 6 below.

Table 6. Path/edge properties of the updated method.

Attribute Description New

Ascent Ascent in meters −
Descent Descent in meters −
Distance Distance in meters −
Type Road type −
Intersection-AB Edge from - to node ids −
Surface Surfaces type the path is composed of if available +
Total angle Sum of changes in direction in degrees over the whole path +
Curviness Ratio between total angle and length of the path +
Traffic lights Number of traffic lights on the path +
Hill flat Meters of path that have a hill gradient 0–1% +
Hill gentle Meters of path that have a hill gradient 1–3% +
Hill moderate Meters of path that have a hill gradient 3–6% +
Hill challenging Meters of path that have a hill gradient 6–9% +
Hill steep Meters of path that have a hill gradient 9–15% +
Hill extremely steep Meters of path that have a hill gradient +15% +
Bicycle access Indicates whether a route is accessible by bicycle +
Foot access Indicates whether a route is accessible by foot +
Car access Indicates whether a route is accessible by car +

4. Representing Path and Intersection Features in a Property Graph
The first step of representing path properties is identifying which features should

be represented in a property graph and their transformation into presentable features.
It should be noted that only intersection nodes are saved in the property graph. Other
OpenStreetMap nodes are processed, and edges are created from them.

In the following equations for different properties, the node (n1 = nx) represents the
starting node of the edge, and node (nN = ny) represents the ending node of the edge.

4.1. Intersection Elevation

The feature relates to the elevation attribute of each node (intersection). These data can
be mined from the latitude–longitude pairs of nodes and their corresponding elevation on
the DEM model. The attribute is retrieved by querying the DEM API (either OpenTopoData
or Open Elevation) for each of the graph nodes.

4.2. Ascent and Descent

The feature relates to the total ascent and descent that the person achieves when trav-
eling between two nodes. It is not enough simply to check the starting node (intersection)

Information 2025, 16, 30 8 of 29

and ending node (intersection) elevation since it may be that the elevation could be roughly
the same, as shown in Figure 5, while there is a hill between the points.

OpenStreetMap nodes
NyNx

el
ev

at
io

n

Figure 5. Property graph of intersections (nodes) and roads (edges).

The ascent between nodes nx and ny is calculated as a sum of all positive changes in
elevation, as shown in (1). This means that, if you move from node ni to node ni+1, the
change in elevation is calculated as H(ni+1)− H(ni), or 0 if there was a descent between
the two nodes.

Ascent(nx, ny) =
n−1

∑
i=1

max(0, H(Ni+1)− H(ni)) (1)

The descent between nodes nx and ny is, therefore, calculated as the sum of all the
negative changes in elevation, as shown in (2). This means that, if you move from node ni

to node ni+1, the change in elevation equals H(ni)− H(ni+1), or 0 if there was an ascent
between the two nodes. H(Ni) represents the elevation value at the node Ni.

Descent(Nx, Ny) =
N−1

∑
i=1

max(0, H(Ni)− H(Ni+1)) (2)

4.3. Distance

This feature represents the measure of the real-world length of the path connecting
two nodes. The distance between nodes nx and ny is calculated as (3), where the distance is
equal to the sum of all distances for all the succeeding nodes between n1 and nn.

Distance =
N−1

∑
i=1

d(ni, ni+1) (3)

The individual distance (d(ni, ni+1)) between two nodes (ni and ni+1) with known
latitude (ϕi, ϕi+1) and longitude (λi, λi+1) can be calculated using two approaches. The
first approach uses the Haversine formula, known commonly as the great-circle distance
formula, proposed by [48], and the second method uses the Pythagorean theorem. The
drawback of the first method is that the calculated distances assume that both points are on
the same elevation, while the drawback of using the Pythagorean theorem is that it does
not take the curvature of the Earth into account.

In the following equations for distance calculation, r represents the radius of the Earth,
which is approximated to 6378.1 km, as proposed by [49]. ∆λ represents the difference in
longitudes between two points (λi − λi+1), and ∆ϕ the difference in latitudes between the
two points (ϕi − ϕi+1).

Information 2025, 16, 30 9 of 29

The first approach to using the Haversine Formula (4) is calculated following the
approach used in [50]. It should be noted that, when using the Haversine formula, the
latitudes and longitudes must be expressed in radians and not degrees.

d = 2r arcsin

(√
sin2

(
∆ϕ

2

)
+ cos(ϕ1) cos(ϕ2) sin2

(
∆λ

2

))
(4)

The second approach to using the Pythagorean theorem is calculated following the
approach used in [50], but it is extended with the measure of elevation. The full equation
for the distance between two points is (5).

d =
√

∆x2 + ∆y2 + ∆h2 (5)

where ∆x is expressed as

∆x = ∆λ × r × cos
(

ϕ1 + ϕ2

2

)
(6)

and ∆y is expressed as
∆y = ∆ϕ × r. (7)

The resolved full and long expression for distance can be resolved as

d =

√(
∆λ × R × cos

(
ϕ1 + ϕ2

2

))2
+ (∆ϕ × R)2 + (∆h)2. (8)

4.4. Splitting the Nodes (Intersections)

When navigating in intersections, where the person must actually go is very impor-
tant. When traveling over a four-way intersection, the person may choose three different
outcomes: the person may turn left, turn right, or cross the intersection, and the choice
he/she makes will impact the speed. This means that a simple property graph (Figure 6,
where each intersection is represented by only one node and connected with surrounding
intersections by double-directed edges) is insufficient in representing the information about
real-world turning/changing direction right of way on a property graph path.

A way to resolve individual nodes and their edges must be proposed if we want to
model the properties for each of the options the person has when traversing an intersection.

2

1

4

3

2

1

5

3

4

Figure 6. Intersections on a property graph (background source: [31]).

A way to do this is to split the nodes instead of representing an intersection as a single
node. We can split a single node into each of the incoming edges to the intersection node,
each representing a specific direction or part of the intersection (Figure 7). This allows us to

Information 2025, 16, 30 10 of 29

prevent unnecessary information loss when transforming the OpenStreetMap data into a
property graph.

2

1

3

4

Figure 7. Splitting the nodes (background source: [31]).

This, of course, increases the complexity of the graph, and for each node (intersection),
the number of nodes needed for a replacement of an intersection equals the number of
nodes it is connected to (N), which means that a four-way intersection will remove one
node and add four new nodes. These new nodes need to be connected with edges to
represent the choices the person has. The number of new connections can be determined
from the maximum number of edges theorem [51], which, applied to our case, results in
Nnew1 number of new edges for an undirected graph, as shown in

Enew1 =
N(N − 1)

2
(9)

and in an Enew2 number of new edges for a directed graph (which applies to our property
graph of roads and intersections), as shown in

Enew2 = N(N − 1). (10)

4.5. Calculating Intersection Angles

The calculation of intersection angles can only be performed on previously split nodes
(see Section 4.4). The goal of this property is to know the turn that the person has to make
when crossing the intersection. Calculating this property is done in two steps. The vector
of each of the intersection paths has to be calculated in the first step.

Let us consider three nodes (intersections) called na, ni, nb that are linked with edges
ea,i and ei,b. The edges are already constructed relationships, but we also know that each
edge is constructed from OpenStreetMap nodes and ways. Assuming that the edge ea,i is
constructed from nodes a1, a2, . . . , an and edge ei,b is constructed from nodes b1, b2, . . . , bm,
and since ea,i terminates in an and ei,b starts in b1, the following is true an = b1, as shown in
Figure 8.

na ni nb
an-1a2 b2

an = ni = b1

bm-1

na = a1 nb = bm

Figure 8. The OpenStreetMap nodes of three intersections and two edges.

We are only interested in the direction of both routes at the intersection. At the
intersection node ni, the direction of the route represented by edge ea,i is determined by the
vector from an−1 to an, and the direction of the edge ei,b is determined by the vector from

Information 2025, 16, 30 11 of 29

b1 to b2. We must first convert the latitude and longitude pairs into Cartesian coordinates
(xE, yE, zE). This is done using the approach presented by [52], which states the following:xE

yE

zE

 =

 R cos ϕ cos λ

R cos ϕ sin λ(
1 − e2)R sin ϕ

. (11)

where R is the Earth’s average radius, ϕ represents the geodetic latitude, λ is the geodetic
longitude, and e2 represents the first eccentricity squared. We can simplify the equation
further by assuming the Earth is a perfect square, which means the eccentricity equals 0.
This gives us the following equation:xE

yE

zE

 =

R cos ϕ cos λ

R cos ϕ sin λ

R sin ϕ

. (12)

Once we have the Cartesian coordinates of all nodes, we can show the vectors repre-
senting the directions as

Va,i = (xan − xan−1 , yan − yan−1) (13)

for the first edge and
Vi,b = (xb2 − xb1 , yb2 − yb1) (14)

for the second edge.
To calculate the turning angle at the intersection ni, we need to find the angle between

these two vectors. This can be done using the dot product [53] formula, which is applied to
our case and is seen below

θ = arccos
(

Va,i · Vi,b

|Va,i||Vi,b|

)
(15)

where θ is the angle between the vectors, Va,i · Vi,b is the dot product of Va,i and Vi,b, and
|Va,i| and |Vi,b| are the magnitudes (lengths) of these vectors.

4.6. Curviness of the Road

This property refers to the shape of the road the user must pass when traveling over
the edge between two intersections. This property is important since it affects the person
or vehicle dynamics, safety, and speed. To put it in simpler terms, a path that has a lot of
curves may not allow such high speeds as a road that is much less curvy, which means that
it contains fewer bends or that these bends are less sharp.

There are multiple ways of defining and calculating the curviness of the road, and
we present two solutions: (1) the length ratio and (2) the ratio of summed vector angles to
the distance.

The length ratio method (1), in our case, would involve calculating the distance of the
real-world path (shown as solid lines between individual nodes) versus the distance of the
straight-line path (shown as a dashed line) between two points, as shown in Figure 9.

Let us suppose that we have two nodes (intersections) na and nb, that are connected in
both ways via edges ex and ey. It does not matter whether we want to calculate the ratio for
ex or ey because they will have the same ratios. The curviness ratio, in this case, would be
expressed as a ratio between the straight-line distance (dstraight) and actual length (dactual)
of the path between both nodes. The distance calculations can be done using either the
great-circle distance or the Pythagorean theorem, as shown in Section 4.3.

Information 2025, 16, 30 12 of 29

Figure 9. Distances between OpenStreetMap nodes versus straight-line distance between two nodes
(intersections) (background source: [31]).

This means that the curviness (C1) of the edge can be expressed as

C1 =
dactual

dstraight
. (16)

This means that an edge with a curviness ratio of exactly one would represent a
perfectly straight road in real-world conditions, and an edge with a curviness ratio of two
would represent a road that is twice as long as the straight-line distance between two nodes.
However, this approach, while really simple and easy to calculate, involves a limitation: a
high curviness ratio does not necessarily mean that a road has numerous turns and bends.
Instead, it could simply mean that the road follows a lengthy, circuitous route without
significant changes in direction, which brings us to the next approach.

The second way (2) to represent curviness is summing the vector angles and dividing
them over distance. To do this, we use a similar approach to the approach used in Section 4.5.
This means that the angle between each of the three OpenStreetMap nodes can be calculated
using the dot product.

Let us again suppose that we have two nodes (intersections), nx and ny, that are con-
nected in both ways via edges ex and ey. The edge ex was constructed from OpenStreetMap
nodes (n1, n2, n3, . . . nN) with a known latitude and longitude. In the first step, we must
convert all nodes’ latitudes and longitudes into Cartesian coordinates, which can be done
using the approach presented in (12). Next, the angle must be calculated for all three
consecutive nodes ni, ni+1, ni+2, where 1 <= i + 2 < N. This is done using the dot product
formula, mentioned previously in (15), this gives us angles θ1,2,3, θ2,3,4, . . . θn−2,n−1,n. The
curviness of the road (C2) can then be defined as a sum of all angles divided by the actual
distance the road takes, as shown below

C2 =
∑N−2

i=1 θi,i+1,i+2

dactual
. (17)

If needed, we can save just the sum of all angles, which would omit the total distance,
as shown below

C2 =
N−2

∑
i=1

θi,i+1,i+2. (18)

This is useful if we want, potentially, to combine the angles with the intersection angles
in order to show the total angle change of a route generated from the graph data.

4.7. Hilliness of the Road

The property refers to the intensity and length of the hills that the edge (road) has
between two nodes (intersection). This property is needed because the ascent and descent

Information 2025, 16, 30 13 of 29

properties do not sufficiently describe whether the path’s hills are steep or gradual. The
steepness influences the maximal mean power values of cyclists [54] severely and the
energy expenditure of runners [55]. The incline of the slope is most usually expressed in
gradient/slope and most commonly expressed in %. As such, an x% slope is represented
by an x increase in elevation meters (melevation) over 100x horizontal meters (mhorizontal), as
defined by [56] and shown in the equation below:

slope (%) =
melevation
mhorizontal

. (19)

Because hills vary by intensity, the best way is to introduce multiple categories and
properties for hills with different gradients. So, in the first step, we need to categorize the
hill gradients into intervals. The hills can, theoretically, have gradients between −∞ for
downhill and ∞ for uphill. We must select a suitable number of categories. More categories
will allow for finer distinctions between different gradients, which is beneficial for detailed
analysis. However, too many categories can lead to a complex system that uses many
resources for creation and use.

Suppose we want to have N categories with intervals (I1, I2, I3, . . . IN) for hill gradients
(g). Each of the gradients can, therefore, be classified into one of the categories, where
the first interval (20) occupies the space between negative infinity and X1, and the last
interval (23) occupies the space between XN−1 and positive infinity. All the other intervals
in between (e.g., (21) and (22)) have both maximum and minimum bounds.

I1 = {g ∈ R | g < X1} (20)

I2 = {g ∈ R | X1 ≤ g < X2} (21)

IN−1 = {g ∈ R | XN−2 ≤ g ≤ XN−1} (22)

IN = {g ∈ R | g > XN−1} (23)

Following the approach proposed by [57], we classified the hill gradients into six
categories, as outlined in Table 7.

Table 7. Cycling hill gradient categories.

Gradient Category Name Description

0–1% Flat terrain Level terrain offering minimal resistance.

1–3% Gentle climb Mild incline, easy for most cyclists.

3–6% Moderate climb Noticeable incline may lead to gradual tiredness.

6–9% Challenging climb Difficult for regular riders, quite hard for beginners.

9–15% Steep climb Intensely challenging, causes significant strain over time.

15%+ Extremely steep climb Extremely demanding for all, with sustained difficulty.

The six categories are as follows: (1) flat terrain, which indicates essentially level
ground; (2) gentle climb, representing a mild incline that is generally easy to climb for
most cyclists; (3) moderate climb, representing an incline that could lead to gradual fatigue;
(4) challenging climb, denoting climbs that are difficult even for regular cyclists and
hard for beginners; (5) steep climb, which represents a very challenging gradient causing
significant strain; and (6) extremely steep climb, describing gradients that are exceedingly
demanding for all cyclists and very painful to sustain. This means that each edge will have
six additional numerical properties.

But how do we know in which category we classify a single hill? Figure 10 shows
the issue roughly by defining the hills based on their appearance. The X-axis shows the

Information 2025, 16, 30 14 of 29

distance traveled and the Y-axis the elevation. In the case of (a), this is fairly simple since
we can determine that the hill started when the ascent started and ended when the road
flattened out; we also have a nice, continuous gain in elevation, making the hill gradient
fairly simple to calculate. This, however, changes when a hill of type (b) is considered. We
can see a fairly gentle rise in elevation, which then changes into a steep elevation change
and then plateaus into a gentle hill again. We might even arrive at scenario (c), which
starts off as a gentle elevation gain and then plateaus and continues with a steep gradient;
sometimes the road may even go down a bit, like in case (d), or not the actual road but the
data behind it, since the DEMs may involve some small errors.

d) complex hill with
downward segments

c) complex hill with plateau
and changes in gradient

b) simple hill with changes
in gradient

a) simple hill with constant
incline

Figure 10. Scenarios of different hill types.

Other issues resulting from the DEM that must be taken into account are as follows:
(1) their precision, which, in most cases, is 1 m, which means that, in non-steep hills, the
increase in elevation may appear to occur step-wise (e.g., 1 1 2 2), while, in reality, it is
not; and (2) their resolution in cases of very steep hills, where, even inside the squares, the
elevation may be severely different.

4.8. Traffic Signals

Some intersections may contain traffic lights, which means they may be less suitable
for travel since the user may lose some time traveling over them waiting for the green
light. The traffic signals are often saved in OpenStreetMap nodes [58] using the tag with
a key–value pair of highway : tra f f ic_signals. The inclusion of traffic signals in property
graph data has to consider that the traffic lights may occur somewhere along the road
where there are no intersections, e.g., a pedestrian crossing with traffic signals along a
major road, or at actual road intersections. This means the property must be included in
both nodes and edges. This means we will include the property signals in both nodes and
edges. In an intersection, this will be calculated as (24), where, ni represents the intersection
node. As shown, there may be a traffic light or not, which means the property’s value will
be either zero or one.

ni[signals] =

0 if node doesn’t have a traffic light,

1 if node has a traffic light.
(24)

In the case of the edge ei composed of nodes n1 to nN , the value of the signals property
will be the sum of the signals properties of all the nodes in the edge, except for the starting
and ending node, since they are already counted in node signals property. This can be
represented as

ei[signals] =
N−1

∑
k=2

0 if nk doesn’t have a traffic light,

1 if nk has a traffic light.

 (25)

where nk represents the nodes of the edge, and k starts with two, since the first node n1 is
excluded, and the sum continues to N − 1, since the N represents the final node of the edge.
This approach ensures that only the traffic signals located between the first and last nodes
of the edge are counted.

Information 2025, 16, 30 15 of 29

4.9. Road Type

Over 28 different road types (e.g., motorway, trunk, primary, secondary, tertiary,
residential, . . .) exist in OpenStreetMap data, and they are specified in the OpenStreetMap
way objects as tags with the key highway [59]. An individual edge on the graph can be
composed of multiple ways (if the edge contains more than 2000 nodes). We are interested
in what type of road it is. Is it a motorway and not suitable for pedestrians or cyclists? The
roads can also be of primary, secondary, or tertiary type, which ranks their importance in
the country’s road system and may influence traffic. In our case, we want to assign the
highway tag to each of our edges. Because a road may change between intersections, one
edge may have more than one road type.

Suppose we have two intersections, nx and ny, connected via edges ex and ey. The
edge ex is created from nodes n1 to nN , and edge ey is created from nodes nN to n1. Each
of these nodes, ni, where 1 ≤ i ≤ N can be assigned at least one OpenStreetMap way
that the node was originally taken from—at least one because, when one way ends and
another starts, they can terminate and start in the same node. Otherwise, the road would
be unconnected.

We can solve the issue of assigning the road type in two ways: (1) by assigning a list
of all types the edge travels over and (2) by selecting the most common road type on an
individual edge, with the most common meaning the road type with the largest cumulative
distance.

The (1) approach can be conducted by finding all the ways in which the nodes are part
of it. Let us say that ni belongs to a set of ways, Wi. We aim to identify a subset of ways,
Wactual ⊆ Wpotential , traversed in the path. Here, Wpotential represents the union of all Wi for
i = 1, 2, . . . , N.

The algorithm to determine Wactual applies the following order: In the first step, we
Initialize Wactual as an empty set. In the next step, we compute the intersection of each
pair of consecutive nodes’ (ni, ni+1) sets of ways (I = Wi ∩ Wi+1) and update the set
Wactual by adding the intersection of ways, I, to it (Wactual ∪ I). Mathematically, this can be
represented as

Wactual =
N−1⋃
i=1

(Wi ∩ Wi+1). (26)

where Wi and Wi+1 are the set of ways that the nodes ni and ni+1 are part of, and Wi ∩Wi+1

represents the shared ways of two consecutive nodes, ni and ni+1.
Now that we have a set of all valid ways, as shown below,

w1, w2, . . . , wN ∈ Wactual , (27)

We check the highway tag (H(wi)) for each of the set elements (wi), and we create a
union set of all highway tags in the resulting edge, as shown in (28).

Htotal =
N⋃

i=1

H(wi). (28)

The (2) second approach can be done in the next way. In the first step, we create a list
of all succeeding pairs of nodes [(n1, n2), (n2, n3), . . . (nN − 1, nN)]. From them, we create
processed road-type elements, which we will call (R1,2, R2,3, . . . RN−1,N), and save them in
set R.

Information 2025, 16, 30 16 of 29

Each Ri,i+1 element will contain two attributes, distance (Ri,i+1[d]) and the correspond-
ing highway tag (Ri+1[highway]).

The approach to calculating the distance between two nodes is (4), or (8). The approach
to selecting the highway tag for each of the pairs is finding the ways (Wi and Wi+1) the first
ni and second ni+1 node belong to and computing the intersection which represents the
highway tag of the road-type element Ii,i+1, as shown below

Ii,i+1 = Wi ∩ Wi+1, (29)

The resulting set will, due to the structure of the OpenStreetMap data, always contain
only one way element. We can then check the highway tag of the way element and add it to
the resulting road-type element.

Once we have done this for all of the node pairs to get road-type elements, we must
first identify all the present highway tags, H. This is done by creating a union of all the
road-type highway sets, as shown below:

H =
N⋃

i=1−1

Ri,i+1[highway]. (30)

After this, we need to iterate over all road-type elements in set R, check the highway
tag (h) for each segment, and sum the distances for segments that share the same tag to
calculate the cumulative distances for each tag (D(h)), as shown below

D(h) = ∑
Ri,i+1∈R Ri,i+1[highway]=h

Ri,i+1[d] ∀h ∈ H. (31)

After that, we select the highway tag with the highest value and assign it to the edge.

4.10. Surface

This attribute provides the physical surface of the edge. It is derived from the surface
OpenStreetMap tag [60], which provides over 40 values for different values. The surface tag
is not necessarily present in each OpenStreetMap way, so the value may remain empty. The
tag values are categorized roughly into paved, unpaved, and special surfaces. Common
values of the attribute are asphalt, paved, concrete, unpaved, gravel, etc.

The issue of an edge possibly containing different surface types is similar to the issue
that an edge may contain different road types. So, the transformation into property graph
attributes can be performed in the same fashion as in Section 4.9 in the road type subsection.

4.11. Accessibility and Usage Restrictions of Road Types in OpenStreetMap

There are generally three main modes of transport that can travel over a certain
path: pedestrians, cyclists, and cars. Not all paths are suitable for each of them; e.g., a
pedestrian cannot travel on a motorway, and a car cannot travel on a cycleway. The road
type itself can sometimes determine these limits, but additional tags have to be inspected
sometimes. Table 8 presents the different road types and their accessibility to cars, cyclists,
and pedestrians. In some cases, the accessibility depends on local or national laws, where
the tilde (∼) symbol is used.

Information 2025, 16, 30 17 of 29

Table 8. Road types and allowed usage for cars, cyclists, and pedestrians according to Open-
StreetMap data.

Road Type Cars Cyclists Pedestrians

Motorway [61] + − −
Trunk [62] + ∼ −
Primary [63] + + ∼
Secondary [64] + + ∼
Tertiary [65] + + +
Unclassified [66] + + +
Residential [67] + + +
Service [68] + + +
Pedestrian [69] − + +
Footway [70] − + +
Cycleway [71] − + +
Path [72] − + +
Track [73] ∼ + +
Living Street [74] + + +

Another thing is that, although a road may normally be used by one mode of transport,
sometimes local traffic signalization prohibits its use. For cycling [75], this is shown as the
following tag value pairs, bicycle:dismount and bicycle:no and for pedestrians as foot:no [76];
similar rules exist for cars and other modes on transport.

On the property graph, this will be expressed as three additional properties to each
path, called bicycle_access, foot_access, and car_access, with each assigned a true or false value.

4.12. Directionality

This property refers to the directionality of the path (edge). This property is found in
OpenStreetMap under the oneway:yes tag [77]. It signifies that the path is only passable in
the same direction in which the nodes are ordered, and not in the opposite direction. This
attribute is not calculated, but it actually serves to determine which edges are generated
and which are not. When generating a property graph, it is important to determine for
which users we are generating routes since directionality only influences vehicles and can
be disregarded for pedestrians. Since an edge can be composed of one or multiple ways,
the route can be considered one-way if at least one way contains the tag oneway:yes.

5. Results
The proposed method was tested and presented in a case study that presents the

generation of a property graph based on the data available for the area of Slovenia, which
covers roughly 20,271 km2 [78]. The boundary of the property graph for generation was
based on the Geofabrik area of Slovenia [79]. This study aimed to investigate the approach’s
feasibility and the presentation of a sample property graph generated through the proposed
approach. The process can also be adapted easily to other geographical areas.

The process followed the approach proposed in [45,47], changed by several optimiza-
tions and improvements, which were a result of newly constructed properties defined in
previous chapters, as well as ways to increase the construction speed of the property graph.

This is concluded by using the presented property graph and using it on an existing
evolutionary-based pathfinding algorithm [23] to generate a few sample routes, where
differences between old and newer methods are also highlighted.

Information 2025, 16, 30 18 of 29

5.1. Generated Property Graph

The generated property graph had 1,486,886 nodes (split intersections), which were
the result of 263,454 actual intersections and 2,973,478 edges, of which 2,229,886 were
intersection-based edges, and 743,592 were actual paths.

5.2. Process

The process of generating a property graph was composed of the following steps,
which are described below:

1. Dataset download.
2. Server deployment.
3. Data preprocessing.
4. Node (intersection) identification.
5. Node processing.
6. Edge (paths) construction.
7. Edge (paths) merging.
8. Removing unused nodes.
9. Splitting intersections.
10. Property graph solutions.

5.2.1. Dataset Download

The first step was downloading the right data for the property graph generation. This
means that DEM and OpenStreetMap data needed to be downloaded. Since we used
Open-Elevation API [44], the dataset for Elevation Data could be split into 1 × 1 degree tiles.
The dataset location for EU-DEM [80] was (https://opendem.info/opendemeu_download_
4258.html, accessed on 1 August 2024), from which N45E014, N45E015, N45E016, N46E013,
N46E014, N46E015, and N46E016 tiles were downloaded; the available dataset follows the
convention described in the Table 9 below for naming files.

Table 9. Explanation of Code N45E014.

N 45 E 014

North 45°–46° East 14°–15°

The OpenStreetMap data was downloaded from the Geofabrik download servers
(https://download.geofabrik.de/europe/slovenia.html, date of download: 12 August
2024). The data are updated daily, and at the time of the download, the latest version
(slovenia-latest.osm.pbf) was downloaded.

5.2.2. Server Deployment

The servers were established in the second step. The architecture of the solution
was split into servers and a local executer program that accesses this server. To ensure
portability, the servers were prepared as a set of Docker [81] containers. Two groups of
Docker containers were established, notably APIs and databases, as shown in Figure 11.

https://opendem.info/opendemeu_download_4258.html
https://opendem.info/opendemeu_download_4258.html
https://download.geofabrik.de/europe/slovenia.html

Information 2025, 16, 30 19 of 29

Databases

REST APIs

Document-oriented
MongoDB

OpenStreetMap query
Overpass API

Elevation
Open Elevation API

Graph
Neo4J

In-memory store
Redis

Figure 11. Overview of the server deployment structure.

For APIs, two containers were set up, notably the Overpass API [42] and Open
Elevation API [44]. For data containers, three databases were set up. The document-
oriented MongoDB served as the storage for all the calculated attributes, and its data were
later imported into Neo4j. The remaining Redis database was used to help track which
roads and pathways had already been processed and which had not.

5.2.3. Data Preprocessing

Data preprocessing techniques were used to speed up the generation of the graph.
This was done by eliminating the unnecessary data from the OpenStreetMap and preparing
the data for easier retrieval.

In this step, only ways with tag highways (paths) and their nodes were extracted from
the data. This was done using the Pyosmium library [82]. The resulting file size was
reduced significantly (the updated file size was 17% of the original), as shown in Table 10.
The file was also produced in the slightly less compressed version (*.bz2 - bzip2) because
Overpass API does not work with *.pbf (protocol buffer) files.

Table 10. Comparison of original and updated OSM files.

File Nodes Ways Format File Size

Original 40,171,270 2,621,093 osm.pbf ~279 MB

Updated 5,751,333 430,308 osm.pbf ~49 MB
osm.bz2 ~ 82 MB

This was continued by using Pyosmium to save all the nodes and their ways, as well
as ways with their nodes inside a Mongo database, where each intersection was saved into
a helper collection, and each way was saved into a separate helper collection. This was done
to allow nodes (in later steps) to be queried directly from the Mongo database. To speed
up the later retrieval further, the indexes of documents in both collections were selected as
node and way IDs.

5.2.4. Node (Intersection) Identification

The intersection identification was concerned with identifying all the intersections of
the specified area. This was done following the original approach [47], where a map is split
into small latitude–longitude squares, and then each succeeding square is queried using
Overpass API. Nodes that are connected to three or more nodes are identified in the query.

Information 2025, 16, 30 20 of 29

The resulting collection featured 391,087 intersections. The identified nodes were saved in
the intersections collection, and each entry contained the following attributes:

• _id: OpenStreetMap id of the node;
• lat: Latitude of the node;
• lon: Longitude of the node;
• tags: any OpenStreetMap key/value pairs the node contained.

5.2.5. Node Processing

Each node entry in the intersections collection was extended in the node processing
phase. This was done by adding elevation data and querying the elevation API. Each node
was also checked to see whether it contained the traffic signal tag and the ways in which
the node was part of it. The resulting entry for intersections was, therefore, _id, lat, lon,
and tags from the previous stage, as well as the following additional attributes:

• elevation: elevation above sea level in meters.
• traffic_signals: is there a traffic signal at the node location with a value of true or

false?
• way_ids: which (OpenStreetMap) ways is the node part of?

5.2.6. Edges (Paths) Construction

After all the intersections had been identified in previous stages, now, connections
had to be established between intersections. The proposed entries for edges had the
following attributes:

• start_node: the starting node of the connection;
• end_node: the ending node of the path;
• distance: the total distance in meters using the Pythagorean approach;
• ascent, descent: the total ascent and descent in meters;
• path_type: the array of highway types the path is built on;
• surface: the list of surface types, if available (e.g., asphalt);
• total_angle: the total change in direction in degrees;
• curviness: the degrees per meter traveled, using the ratio of summed vector angles to

the distance approach;
• traffic_lights: the number of traffic lights on the path (not including traffic lights in an

intersection);
• hill_flat, hill_gentle, hill_moderate, hill_challenging, hill_steep, and hill_extremely_steep:

the number of meters traveled on the hill of a given grade;
• backward: whether an equivalent reverse route exists;
• bicycle_access, foot_access and car_access: access to the route for given modes of

transport.

The values of attributes were generated according to previously established and
presented methods for their calculation. Overall, 998,714 connections were established.

5.2.7. Edge (Paths) Merging

Before splitting intersections, the unnecessary intersections had to be eliminated,
and paths had to be merged. This was done to make the graph as simple as possible
without losing too much quality. Suppose we have a case of three nodes (NX , NY, and NZ),
where the middle node (NY) is only connected to two nodes (NX and NZ), as shown in
Figure 12 below.

Information 2025, 16, 30 21 of 29

NX NY NZ
EYX

EXY EYZ

EZY

Figure 12. Potential edge merging scenario.

It can be argued that we could eliminate the node (NY) and merge the edges (EXY, EYZ

and EZY, EYX) so that the complexity of the graph would be reduced. This process was
performed iteratively until no such nodes existed. This was due to the fact that a merged
edge can result in the existence of a new edge that has the potential for merging, as
demonstrated in Figure 13, where the merging has to happen in two iterations to eliminate
unnecessary edges.

Initial

Step 2

Step 1

Figure 13. Edge (paths) iterative merging steps.

In our case, the initial graph had 998,714 edges (paths) and 391,087 nodes (intersection);
through the process of iterative merging, this was reduced to 743,597 edges (paths) and
263,454 nodes (intersections) in six iterations, as shown in Table 11 below.

Table 11. Total edges and nodes across iterations.

Iteration Total Edges Total Nodes

Initial 998,714 391,087

1 816,935 300,133

2 758,099 270,705

3 745,851 264,581

4 743,823 263,567

5 743,613 263,462

6 743,592 263,454

Eliminated 255,122 (~25.5%) 127,633 (~32.6%)

Overall, this led to the elimination of roughly a quarter of edges and a third of all
nodes. A total of 255,122 edges and 127,633 nodes were eliminated.

Information 2025, 16, 30 22 of 29

5.2.8. Removing Unused Nodes

It is possible that unused nodes (intersections) exist in the graph. This can rarely
happen near the edges of the OpenStreetMap file that was processed; e.g., an intersection
was identified, but the ways did not lead anywhere because they were located in another
country. These intersections were removed to reduce graph complexity. Before this step,
there were 263,454 nodes, which were reduced to 263,322 nodes. This presented a very
small reduction, but it was still conducted to ensure best practices.

5.2.9. Splitting Intersections

The splitting intersections phase followed the approach proposed in Section 4.4. The
goal was to create new edges and nodes for the better modeling of curves on intersections.
A total of 2,229,886 new paths were created. The resulting graph had a total of 1,486,886
intersections and 2,973,478 paths.

5.2.10. Property Graph Solutions

The prepared collections of intersections and paths were then processed and in-
serted into property graph solutions. This process was conducted for the Neo4j graph
database [83], which was selected based on its ubiquity, as Neo4j is the most popular
graph-based database management system [84].

5.3. Sample Route Generation

To demonstrate the approach feasibility in route generation, an evolutionary algorithm
for generating cycling training routes [23] was used on the property graph where two cases
of routes were generated; the routes were then plotted on the OpenStreetMap [28] overlay,
and cumulative numerical features are presented for each route, which were derived from
the property graph data. Only relationships that were suitable for bicycles were included
based on the bicycle_access attribute. The first route (A) is thoroughly described, and the
remaining route is described in a condensed manner to avoid repetitiveness.

Route A

The algorithm was first tasked with finding and generating a 50-kilometer route with
an ascent of 1000 m between Ruše and Lenart. The resulting route (shown in Figure 14)
was 52 km long and was of mixed hills and flat terrain.

Figure 14. OpenStreetMap projection of Route A.

The computed route was composed of 781 segments (relationships). The property
graph data allowed us to thoroughly analyze the route features, as shown in Table 12, and
continued in the presented road type and surface type analysis.

Information 2025, 16, 30 23 of 29

Table 12. Route A summary.

Route A

Distance 52,246 m

Ascent 1013 m Descent 875 m

Total angle 13,544° Curviness 0.259

Traffic lights 9 Bicycle access true

Flat 30,505 m Hill gentle 7288 m

Hill, moderate 5796 m Hill challenging 3354 m

Hill, steep 2374 m Hill extremely steep 2925 m

The analysis of the property graph features revealed the distribution of road types
within the generated route. The most prevalent categories were secondary roads, account-
ing for 21.70%, and unclassified roads, representing 21.64% of the total route. Residential
roads constituted 17.75%, while tertiary roads comprised 13.52%. Other notable road types
included paths (7.76%), cycleways (4.32%), footways (4.10%), service roads (3.70%), and
tracks (3.31%). Less common categories included primary roads (2.03%) and living streets,
which represented only 0.19% of the total route.

The surfaces were distributed as follows: asphalt covered 46.46% of the total distance,
making it the most common surface. Unknown surfaces accounted for 48.08%, indicating
that a significant portion of the OpenStreetMap data lacks precise surface information. Com-
pacted surfaces contributed 3.59%, while ground surfaces covered 1.71%. Less frequently,
gravel represented 0.14%, grass made up 0.02%, and unpaved areas constituted 0.01%.

Route B

The algorithm was tasked with generating a short 13-km route between Murska Sobota
and Gančani with as little ascent as possible. The resulting route (shown in Figure 15 was
12,875 m long with a total ascent of 28 m.

Figure 15. OpenStreetMap projection of Route B.

The analysis of property graph data allowed us to display the route features shown in
Table 13.

Information 2025, 16, 30 24 of 29

Table 13. Route B summary.

Route B

Distance 12,875 m

Ascent 23 m Descent 38 m

Total angle 2908° Curviness 0.225

Traffic lights 2 Bicycle access true

Flat 11,844 m Hill gentle 856 m

Hill, moderate 93 m Hill challenging 43 m

Hill, steep 29 m Hill extremely steep 7 m

In the original property graph, only the distance, ascent, descent, and road type data
could be extracted.

6. Discussion
The proposed approach, which is an extension of the original approach [47], fills the

knowledge gap of route property graph generation. The additional computed properties
improved the original property graph method greatly; each node had only four usable
properties and each edge (path) only six. This was extended to five properties in each
node (intersection) and 20 usable edge (path) properties. This can improve the existing
approaches [23] to route generation greatly, and these approaches were already applied to
the data generated from the previous method.

The key drawbacks of the previous property graph were identified and improved
upon, mainly by providing additional data regarding the directionality of paths, which
was ignored previously. Another key improvement is expanding the elevation data by
providing ascent and descent and the actual grade of hills from which the ascent was
calculated. The curviness of roads and angle data were also added to edges, which allowed
for even finer refinement when identifying potential routes in real-world environments.

The upgraded approach also followed the best practices of replicability and trans-
parency by establishing how individual properties are generated scientifically and sharing
the repository for data creation, which allows for the verification of the approach and the
quick usage of the approach in other areas.

The property graph potential usage was also expanded to other users (pedestrians
and cars), not only cyclists.

The drawback of the improved approach is that the complexity and size of data are
much larger, which can impact the speed and resources needed for their actual usage. This
can be solved by reducing the area of the property graph, which would reduce the number
of nodes and edges, or the researchers may opt to skip the step of intersection splitting,
which would reduce the number of total edges and intersections vastly.

The large size of the data needs to be considered since it can also limit suitable software
for manipulating said data. Multiple benchmarks [85–87] of popular graphing libraries
exist, so the researchers must take into consideration what area they will work and what
data they will use, as well as the ease of use of each of them. We would not recommend
any particular library, and would leave the choice to researchers using this method.

7. Conclusions
The work presented in the paper presents a comprehensive method for creating

complex geographical-based property graphs based on real-world geographical route data,
which are particularly useful for sports training applications where advanced elevation,
curviness, and track data are needed.

Information 2025, 16, 30 25 of 29

The approach also presents individual properties and identifies ways to calculate them
mathematically from available geographical data. In particular, a new way to tackle the lim-
itations of property graphs in interpreting intersections, by splitting notes, was presented,
allowing for the incorporation of individual intersection angle data in property graphs.

Future research includes improving the evolutionary method for generating cycling
routes [23], which will utilize the new knowledge of the property graph, and prepare
a meta-method that will allow for adding new properties across all components of the
property graph. Another aspect that could be explored is including the context of the edges
where building and other scenic features could be incorporated as mentioned in [88].

Author Contributions: Conceptualization, A.R. and I.F.J.; methodology, A.R.; software, A.R.; val-
idation, A.R. and I.F.J.; formal analysis, A.R.; investigation, A.R. and I.F.J.; resources, A.R.; data
curation, A.R.; writing—original draft preparation, A.R.; writing—review and editing, A.R. and I.F.J.;
visualization, A.R.; supervision, I.F.J.; project administration, I.F.J. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the Slovenian Research Agency, Research Core Funding No.
P2-0057.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The proposed solution is available publicly under the MIT License.
The up-to-date version is available at https://github.com/alenrajsp/GeoGraphGen (accessed on
1 November 2024) GitHub repository.

Acknowledgments: The backgrounds of Figures 2–4, 6, 7 and 9 were retrieved from the aerial
photography, as well as the real estate cadastre, of the Surveying and Mapping Authority of the
Republic of Slovenia, and they are publicly available permission of use: https://www.e-prostor.gov.
si/en/access-to-geodetic-data/?acitem=1934-1931 (accessed on 1 November 2024) under Creative
Commons 4 license.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

A* A-star search algorithm
API Application programming interface
ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer
DEM Digital elevation model
ETOPO Earth topography
EU-DEM European Union Digital Elevation Model
GPS Global positioning system
NED National Elevation Dataset
NZ-DEM New Zealand Digital Elevation Model
OSM OpenStreetMap
QL Query language
SRTM Shuttle Radar Topography Mission
USGS United States Geological Survey
XML Extensible Markup Language

https://github.com/alenrajsp/GeoGraphGen
https://www.e-prostor.gov.si/en/access-to-geodetic-data/?acitem=1934-1931
https://www.e-prostor.gov.si/en/access-to-geodetic-data/?acitem=1934-1931

Information 2025, 16, 30 26 of 29

References
1. Wolodtschenko, A.; Forner, T. Prehistoric and Early Historic Maps in Europe: Conception of Cd-Atlas. Int. Web J. Sci. Technol.

Affin. Hist. Cartogr. Maps 2007, 2, 114–116.
2. An, M. Introduction. In Advances in Cartography and Geographic Information Engineering; Chapter History of Cartography; Springer:

Singapore, 2021; pp. 601–602. [CrossRef]
3. McNeff, J. The global positioning system. IEEE Trans. Microw. Theory Tech. 2002, 50, 645–652. [CrossRef]
4. Diestel, R. Graphs. In Graduate Texts in Mathematics; Chapter The Basics; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–4.

[CrossRef]
5. Angles, R. The Property Graph Database Model. In Proceedings of the 12th Alberto Mendelzon International Workshop on

Foundations of Data Management, Cali, Colombia, 21–25 May 2018; CEUR Workshop Proceedings; Volume 2100, pp. 1–12.
6. Subero, A. Trees. In Codeless Data Structures and Algorithms: Learn DSA Without Writing a Single Line of Code; Chapter Tree Data

Structures; Apress: Berkeley, CA, USA, 2020; pp. 31–34. [CrossRef]
7. Wellhausen, C.; Clemens, J.; Schill, K. Efficient Grid Map Data Structures for Autonomous Driving in Large-Scale Environments.

In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22
September 2021; pp. 2855–2862. [CrossRef]

8. Schrijver, A. On the History of the Shortest Path Problem. Doc. Math. 2012, 17, 155–167.
9. Gasparetto, A.; Boscariol, P.; Lanzutti, A.; Vidoni, R. Path Planning and Trajectory Planning Algorithms: A General Overview. In

Motion and Operation Planning of Robotic Systems, 1st ed.; Carbone, G., Gomez-Bravo, F., Eds.; Springer: Cham, Switzerland, 2015;
pp. 3–27. [CrossRef]

10. Zhang, X.; Zhang, Z.; Zhang, Y.; Wei, D.; Deng, Y. Route selection for emergency logistics management: A bio-inspired algorithm.
Saf. Sci. 2013, 54, 87–91. [CrossRef]

11. Haria, V.; Shah, Y.; Gangwar, V.; Chandwaney, V.; Jain, T.; Dedhia, Y.; Surendra Modi, A. The Working of Google Maps, and the
Commercial Usage of Navigation Systems. Int. J. Innov. Res. Technol. 2019, 6, 184–191.

12. Statista. Leading Smartphone Users Activities Worldwide from July 2021 to June 2022. 2022. Available online: https:
//www.statista.com/statistics/1337895/top-smartphone-activities/ (accessed on 1 November 2024).

13. Yu, G.; Yang, J. On the Robust Shortest Path Problem. Comput. Oper. Res. 1998, 25, 457–468. [CrossRef]
14. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
15. Hart, P.E.; Nilsson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst.

Sci. Cybern. 1968, 4, 100–107. [CrossRef]
16. Ford, L.R. Network Flow Theory; Technical Report; RAND Corporation: Santa Monica, CA, USA, 1956.
17. Hougardy, S. The Floyd–Warshall algorithm on graphs with negative cycles. Inf. Process. Lett. 2010, 110, 279–281. [CrossRef]
18. Dantzig, G.B.; Ramser, J.H. The truck dispatching problem. Manag. Sci. 1959, 6, 80–91. [CrossRef]
19. Flood, M.M. The Traveling-Salesman Problem. Oper. Res. 1956, 4, 61–75. [CrossRef]
20. Minieka, E. The Chinese Postman Problem for Mixed Networks. Manag. Sci. 1979, 25, 643–648. [CrossRef]
21. Edmonds, J.; Karp, R.M. Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems. J. ACM 1972,

19, 248–264. [CrossRef]
22. Ghoseiri, K.; Nadjari, B. An ant colony optimization algorithm for the bi-objective shortest path problem. Appl. Soft Comput. 2010,

10, 1237–1246. [CrossRef]
23. Rajsp, A.; Fister, I. A Modified Evolutionary Algorithm for Generating the Cycling Training Routes. IEEE Access 2022,

10, 109743–109759. [CrossRef]
24. Chicco, D. Ten quick tips for machine learning in computational biology. Biodata Min. 2017, 10, 35. [CrossRef]
25. Loepp, B.; Ziegler, J. Recommending Running Routes: Framework and Demonstrator. In Proceedings of the ComplexRec ’18:

Proceedings of the 2nd Second Workshop on Recommendation in Complex Scenarios, Vancouver, BC, Canada, 7 October 2018;
pp. 1–4.

26. Mariescu-Istodor, R.; Fränti, P. Fast travel-distance estimation using overhead graph. J. Locat. Based Serv. 2021, 15, 261–279.
[CrossRef]

27. Lustig, H. Tour de France 2024 Route Stage 1: Florence—Rimini. 2024. Available online: https://www.cyclingstage.com/tour-
de-france-2024-route/stage-1-tdf-2024/ (accessed on 15 December 2024).

28. Openstreetmap Foundation. OpenStreetMap. 2024. Available online: https://www.openstreetmap.org/ (accessed on 1
November 2024).

29. U.S. Geological Survey. The National Map. 2024. Available online: https://www.usgs.gov/core-science-systems/ngp/tnm-
delivery (accessed on 19 January 2024).

30. Natural Earth. Available online: https://www.naturalearthdata.com/ (accessed on 19 January 2024).

http://doi.org/10.1007/978-981-16-0614-4_17
http://dx.doi.org/10.1109/22.989949
http://dx.doi.org/10.1007/978-3-662-53622-3_1
http://dx.doi.org/10.1007/978-1-4842-5725-8_3
http://dx.doi.org/10.1109/ITSC48978.2021.9564805
http://dx.doi.org/10.1007/978-3-319-14705-5_1
http://dx.doi.org/10.1016/j.ssci.2012.12.003
https://www.statista.com/statistics/1337895/top-smartphone-activities/
https://www.statista.com/statistics/1337895/top-smartphone-activities/
http://dx.doi.org/10.1016/S0305-0548(97)00085-3
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1016/j.ipl.2010.02.001
http://dx.doi.org/10.1287/mnsc.6.1.80
http://dx.doi.org/10.1287/opre.4.1.61
http://dx.doi.org/10.1287/mnsc.25.7.643
http://dx.doi.org/10.1145/321694.321699
http://dx.doi.org/10.1016/j.asoc.2009.09.014
http://dx.doi.org/10.1109/ACCESS.2022.3214997
http://dx.doi.org/10.1186/s13040-017-0155-3
http://dx.doi.org/10.1080/17489725.2021.1889058
https://www.cyclingstage.com/tour-de-france-2024-route/stage-1-tdf-2024/
https://www.cyclingstage.com/tour-de-france-2024-route/stage-1-tdf-2024/
https://www.openstreetmap.org/
https://www.usgs.gov/core-science-systems/ngp/tnm-delivery
https://www.usgs.gov/core-science-systems/ngp/tnm-delivery
https://www.naturalearthdata.com/

Information 2025, 16, 30 27 of 29

31. Surveying and Mapping Authority of the Republic of Slovenia. Public Geodetic Data: Ortophoto DOF025. Creative Commons
Attribution 4.0 International License, Geodetska Uprava Republike Slovenije, Data from Ortophotography. 2024. Available
online: https://eprostor.gov.si/imps-test/srv/api/records/1e0f54cf-9303-4140-8c20-352d5468c0b3 (accessed on 4 October 2024).

32. Surveying and Mapping Authority of the Republic of Slovenia. Public Geodetic Data: Realestate Cadastre. Creative Commons
Attribution 4.0 International License, Geodetska uprava Republike Slovenije, Data from Ortophotography. 2024. Available online:
https://eprostor.gov.si/imps/srv/api/records/9a8fd241-9162-407c-94e7-c98e05766881 (accessed on 4 October 2024).

33. Wilson, J.P.; Gallant, J.C. Digital Elevation Data Sources and Structures; Chapter Digital Te; John Wiley & Sons: Nashville, TN, USA,
2000; pp. 3–5.

34. Polidori, L.; El Hage, M. Digital Elevation Model Quality Assessment Methods: A Critical Review. Remote Sens. 2020, 12, 3522.
[CrossRef]

35. NASA; METI; AIST; Japan Spacesystems; U.S./Japan ASTER Science Team. ASTER Global Digital Elevation Model V003
[Dataset]. 2019. Available online: https://lpdaac.usgs.gov/products/astgtmv003/ (accessed on 4 October 2024).

36. NOAA National Centers for Environmental Information. ETOPO Global Relief Model. 2022. Available online:
https://data.noaa.gov/metaview/page?xml=NOAA/NESDIS/NGDC/MGG/DEM//iso/xml/etopo_2022.xml&view=
getDataView&header=none (accessed on 4 February 2024).

37. European Space Agency (ESA). Copernicus Digital Elevation Model. 2023. Available online: https://dataspace.copernicus.eu/
explore-data/data-collections/copernicus-contributing-missions/collections-description/COP-DEM (accessed on 4 February
2024).

38. European Environment Agency. EU-DEM 1.1. 2017. Available online: https://www.eea.europa.eu/data-and-maps/data/
copernicus-land-monitoring-service-eu-dem (accessed on 19 January 2023).

39. Land Information New Zealand (LINZ). NZ 8m Digital Elevation Model. 2012. Available online: https://data.linz.govt.nz/
layer/51768-nz-8m-digital-elevation-model-2012/ (accessed on 4 February 2024).

40. NASA Jet Propulsion Laboratory. Shuttle Radar Topography Mission (SRTM) Global. Distributed by OpenTopography. 2013.
Available online: https://portal.opentopography.org/raster?opentopoID=OTSRTM.082015.4326.1 (accessed on 4 February 2024).

41. OpenStreetMap Contributors. PBF Format. 2023. Available online: https://wiki.openstreetmap.org/wiki/PBF_Format (accessed
on 5 February 2024).

42. Overpass API Team. Overpass API. 2024. Available online: https://overpass-api.de/ (accessed on 5 February 2024)
43. Nisbet, A. Open Topo Data. Available online: https://www.opentopodata.org (accessed on 5 February 2024)
44. Lourenço, J.R. Open-Elevation: A Free and Open-Source Elevation API. 2024. Available online: https://open-elevation.com/

(accessed on 5 February 2024)
45. Rajšp, A.; Fister, I. Neo4j graph dataset of cycling paths in Slovenia. Data Brief 2023, 48, 109251. [CrossRef]
46. Yadav, S.K. Basics of Graph Theory. In Advanced Graph Theory, 1st ed.; Chapter Graph; Springer International Publishing: Cham,

Switzerland, 2023; pp. 4–6.
47. Rajšp, A.; Heričko, M.; Iztok, F.J. Preprocessing of roads in OpenStreetMap based geographic data on a property graph. In

Proceedings of the Central European Conference on Information and Intelligent Systems, Varazdin, Croatia, 13–15 October 2021,
pp. 193–199.

48. Robusto, C.C. The Cosine-Haversine Formula. Am. Math. Mon. 1957, 64, 38–40. Available online: http://www.jstor.org/stable/
2309088 (accessed on 30 December 2024). [CrossRef]

49. Prša, A.; Harmanec, P.; Torres, G.; Mamajek, E.; Asplund, M.; Capitaine, N.; Christensen-Dalsgaard, J.; Depagne, É.; Haberreiter,
M.; Hekker, S.; et al. Nominal values for selected solar and planetary quantities: IAU 2015 Resolution B3. Astron. J. 2016, 152, 41.
[CrossRef]

50. Maria, E.; Budiman, E.; Haviluddin; Taruk, M. Measure distance locating nearest public facilities using Haversine and Euclidean
Methods. J. Phys. Conf. Ser. 2020, 1450, 012080. [CrossRef]

51. Yadav, S.K. Algebraic terms and operations used in Graph Theory. In Advanced Graph Theory, 1st ed.; Chapter Some Impor;
Springer International Publishing: Cham, Switzerland, 2023; pp. 29–30.

52. Ligas, M.; Banasik, P. Conversion between Cartesian and geodetic coordinates on a rotational ellipsoid by solving a system of
nonlinear equations. Geod. Cartogr. 2011, 60, 145–159. [CrossRef]

53. Axler, S. Inner Products and Norms. In Linear Algebra Done Right, 4th ed.; Chapter Inner Product Spaces; Gorkin, P., Sidman, J.,
Eds.; Springer: Cham, Switzerland, 2024; pp. 182–183. [CrossRef]

54. Valenzuela, P.L.; Mateo-March, M.; Muriel, X.; Zabala, M.; Lucia, A.; Pallares, J.G.; Barranco-Gil, D. Road gradient and cycling
power: An observational study in male professional cyclists. J. Sci. Med. Sport 2022, 25, 1017–1022. [CrossRef] [PubMed]

55. Minetti, A.E.; Moia, C.; Roi, G.S.; Susta, D.; Ferretti, G. Energy cost of walking and running at extreme uphill and downhill slopes.
J. Appl. Physiol. 2002, 93, 1039–1046. [CrossRef]

56. DeYoung, J. Defining slope. In Forest Measurements—An Applied Approach, 1st ed.; Chapter Slope; Open Oregon Educational
Resources: Gresham, OR, USA, 2016; pp. 4–7.

https://eprostor.gov.si/imps-test/srv/api/records/1e0f54cf-9303-4140-8c20-352d5468c0b3
https://eprostor.gov.si/imps/srv/api/records/9a8fd241-9162-407c-94e7-c98e05766881
http://dx.doi.org/10.3390/rs12213522
https://lpdaac.usgs.gov/products/astgtmv003/
https://data.noaa.gov/metaview/page?xml=NOAA/NESDIS/NGDC/MGG/DEM//iso/xml/etopo_2022.xml&view=getDataView&header=none
https://data.noaa.gov/metaview/page?xml=NOAA/NESDIS/NGDC/MGG/DEM//iso/xml/etopo_2022.xml&view=getDataView&header=none
https://dataspace.copernicus.eu/explore-data/data-collections/copernicus-contributing-missions/collections-description/COP-DEM
https://dataspace.copernicus.eu/explore-data/data-collections/copernicus-contributing-missions/collections-description/COP-DEM
https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-eu-dem
https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-eu-dem
https://data.linz.govt.nz/layer/51768-nz-8m-digital-elevation-model-2012/
https://data.linz.govt.nz/layer/51768-nz-8m-digital-elevation-model-2012/
https://portal.opentopography.org/raster?opentopoID=OTSRTM.082015.4326.1
https://wiki.openstreetmap.org/wiki/PBF_Format
https://overpass-api.de/
https://www.opentopodata.org
https://open-elevation.com/
http://dx.doi.org/10.1016/j.dib.2023.109251
http://www.jstor.org/stable/2309088
http://www.jstor.org/stable/2309088
http://dx.doi.org/10.2307/2309088
http://dx.doi.org/10.3847/0004-6256/152/2/41
http://dx.doi.org/10.1088/1742-6596/1450/1/012080
http://dx.doi.org/10.2478/v10277-012-0013-x
http://dx.doi.org/10.1007/978-3-031-41026-0_6
http://dx.doi.org/10.1016/j.jsams.2022.10.001
http://www.ncbi.nlm.nih.gov/pubmed/36243662
http://dx.doi.org/10.1152/japplphysiol.01177.2001

Information 2025, 16, 30 28 of 29

57. de Neef, M. Gradients and Cycling: An Introduction. Climbing Cyclist. 2013. Available online: https://theclimbingcyclist.com/
gradients-and-cycling-an-introduction/ (accessed on 25 August 2024).

58. OpenStreetMap Contributors. Tag:highway=traffic_signals. 2024. Available online: https://wiki.openstreetmap.org/wiki/Tag:
highway%3Dtraffic_signals
(accessed on 1 March 2024).

59. OpenStreetMap Contributors. Key:highway. 2024. Available online: https://wiki.openstreetmap.org/wiki/Key:highway
(accessed on 1 March 2024).

60. OpenStreetMap Contributors. Key:surface. 2024. Available online: https://wiki.openstreetmap.org/wiki/Key:surface (accessed
on 1 March 2024).

61. OpenStreetMap Contributors. Key:highway#Motorway. 2024. Available online: https://wiki.openstreetmap.org/wiki/Key:
highway#Motorway (accessed on 1 March 2024).

62. OpenStreetMap Contributors. Key:highway#Trunk. 2024. Available online: https://wiki.openstreetmap.org/wiki/Key:
highway#Trunk (accessed on 1 March 2024).

63. OpenStreetMap Contributors. Key:highway#Primary. 2024. Available online: https://wiki.openstreetmap.org/wiki/Key:
highway#Primary (accessed on 1 March 2024).

64. OpenStreetMap Contributors. Key:highway#Secondary. 2024. Available online: https://wiki.openstreetmap.org/wiki/Key:
highway#Secondary (accessed on 1 March 2024).

65. OpenStreetMap Contributors. Key:highway#Tertiary. 2024. Available online: https://wiki.openstreetmap.org/wiki/Key:
highway#Tertiary (accessed on 1 March 2024).

66. OpenStreetMap Contributors. Key:highway#Unclassified. 2024. Available online: https://wiki.openstreetmap.org/wiki/Key:
highway#Unclassified (accessed on 1 March 2024).

67. OpenStreetMap Contributors. Key:highway#Residential. 2024. Available online: https://wiki.openstreetmap.org/wiki/Key:
highway#Residential (accessed on 1 March 2024).

68. OpenStreetMap Contributors. Key:highway#Service. 2024. Available online: https://wiki.openstreetmap.org/wiki/Key:
highway#Service (accessed on 1 March 2024).

69. OpenStreetMap Contributors. Key:highway#Pedestrian. 2024. Available online: https://wiki.openstreetmap.org/wiki/Key:
highway#Pedestrian (accessed on 1 March 2024).

70. OpenStreetMap Contributors. Key:highway#Footway. 2024. Available online: https://wiki.openstreetmap.org/wiki/Key:
highway#Footway (accessed on 1 March 2024).

71. OpenStreetMap Contributors. Key:highway#Cycleway. 2024. Available online: https://wiki.openstreetmap.org/wiki/Key:
highway#Cycleway (accessed on 1 March 2024).

72. OpenStreetMap Contributors. Key:highway#Path. 2024. Available online: https://wiki.openstreetmap.org/wiki/Key:highway#
Path (accessed on 1 March 2024).

73. OpenStreetMap Contributors. Key:highway#Track. 2024. Available online: https://wiki.openstreetmap.org/wiki/Key:
highway#Track (accessed on 1 March 2024).

74. OpenStreetMap Contributors. Key:highway#Living_Street. 2024. Available online: https://wiki.openstreetmap.org/wiki/Key:
highway#Living_Street (accessed on 1 March 2024).

75. OpenStreetMap Contributors. Bicycle. 2024. Available online: https://wiki.openstreetmap.org/wiki/Bicycle (accessed on 16
July 2024).

76. OpenStreetMap Contributors. Key:foot. 2024. Available online: https://wiki.openstreetmap.org/wiki/Key:foot (accessed on 16
July 2024).

77. OpenStreetMap Contributors. Key—Oneway. 2024. Available online: https://wiki.openstreetmap.org/wiki/Key:oneway
(accessed on 16 July 2024).

78. Britannica, The Editors of Encyclopaedia. Slovenia Summary. 2020. Available online: https://www.britannica.com/summary/
Slovenia (accessed on 20 August 2024).

79. Geofabrik GmbH. Download Server for Slovenia Data. 2024. Available online: https://download.geofabrik.de/europe/slovenia.
html (accessed on 15 March 2024).

80. European Environment Agency (EEA). European Digital Elevation Model (EU-DEM), Version 1.1. 2019. Available online:
https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1 (accessed on 4 February 2024).

81. Merkel, D. Docker: Lightweight linux containers for consistent development and deployment. Linux J. 2014, 2014, 2.
82. OpenStreetMap Community. Pyosmium: Python Bindings for Libosmium. Available online: https://osmcode.org/pyosmium

(accessed on 8 May 2024).
83. Neo4j, I. Neo4j Graph Database Management System. 2023. Version 5.12. Available online: https://neo4j.com/deployment-

center/ (accessed on 10 January 2024).

https://theclimbingcyclist.com/gradients-and-cycling-an-introduction/
https://theclimbingcyclist.com/gradients-and-cycling-an-introduction/
https://wiki.openstreetmap.org/wiki/Tag:highway%3Dtraffic_signals
https://wiki.openstreetmap.org/wiki/Tag:highway%3Dtraffic_signals
https://wiki.openstreetmap.org/wiki/Key:highway
https://wiki.openstreetmap.org/wiki/Key:surface
https://wiki.openstreetmap.org/wiki/Key:highway#Motorway
https://wiki.openstreetmap.org/wiki/Key:highway#Motorway
https://wiki.openstreetmap.org/wiki/Key:highway#Trunk
https://wiki.openstreetmap.org/wiki/Key:highway#Trunk
https://wiki.openstreetmap.org/wiki/Key:highway#Primary
https://wiki.openstreetmap.org/wiki/Key:highway#Primary
https://wiki.openstreetmap.org/wiki/Key:highway#Secondary
https://wiki.openstreetmap.org/wiki/Key:highway#Secondary
https://wiki.openstreetmap.org/wiki/Key:highway#Tertiary
https://wiki.openstreetmap.org/wiki/Key:highway#Tertiary
https://wiki.openstreetmap.org/wiki/Key:highway#Unclassified
https://wiki.openstreetmap.org/wiki/Key:highway#Unclassified
https://wiki.openstreetmap.org/wiki/Key:highway#Residential
https://wiki.openstreetmap.org/wiki/Key:highway#Residential
https://wiki.openstreetmap.org/wiki/Key:highway#Service
https://wiki.openstreetmap.org/wiki/Key:highway#Service
https://wiki.openstreetmap.org/wiki/Key:highway#Pedestrian
https://wiki.openstreetmap.org/wiki/Key:highway#Pedestrian
https://wiki.openstreetmap.org/wiki/Key:highway#Footway
https://wiki.openstreetmap.org/wiki/Key:highway#Footway
https://wiki.openstreetmap.org/wiki/Key:highway#Cycleway
https://wiki.openstreetmap.org/wiki/Key:highway#Cycleway
https://wiki.openstreetmap.org/wiki/Key:highway#Path
https://wiki.openstreetmap.org/wiki/Key:highway#Path
https://wiki.openstreetmap.org/wiki/Key:highway#Track
https://wiki.openstreetmap.org/wiki/Key:highway#Track
https://wiki.openstreetmap.org/wiki/Key:highway#Living_Street
https://wiki.openstreetmap.org/wiki/Key:highway#Living_Street
https://wiki.openstreetmap.org/wiki/Bicycle
https://wiki.openstreetmap.org/wiki/Key:foot
https://wiki.openstreetmap.org/wiki/Key:oneway
https://www.britannica.com/summary/Slovenia
https://www.britannica.com/summary/Slovenia
https://download.geofabrik.de/europe/slovenia.html
https://download.geofabrik.de/europe/slovenia.html
https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1
https://osmcode.org/pyosmium
https://neo4j.com/deployment-center/
https://neo4j.com/deployment-center/

Information 2025, 16, 30 29 of 29

84. DB-Engines. DB-Engines Ranking of Graph DBMS. 2024. Available online: https://db-engines.com/en/ranking/graph+dbms
(accessed on 20 August 2024).

85. Peixoto, T.P. Graph-Tool: Performance Comparison. 2023. Available online: https://graph-tool.skewed.de/performance.html
(accessed on 21 August 2024).

86. Lin, T. Benchmark of Popular Graph Network Packages—V2. 2022. Available online: https://www.timlrx.com/blog/benchmark-
of-popular-graph-network-packages-v2 (accessed on 21 August 2024).

87. Treinish, M.; Carvalho, I.; Tsilimigkounakis, G.; Sá, N. Rustworkx Benchmarks. 2023. Available online: https://www.rustworkx.
org/dev/benchmarks.html (accessed on 12 October 2024).

88. Mariescu-Istodor, R.; Fränti, P. Context-aware similarity of GPS trajectories. J. Locat. Based Serv. 2020, 14, 231–251. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://db-engines.com/en/ranking/graph+dbms
https://graph-tool.skewed.de/performance.html
https://www.timlrx.com/blog/benchmark-of-popular-graph-network-packages-v2
https://www.timlrx.com/blog/benchmark-of-popular-graph-network-packages-v2
https://www.rustworkx.org/dev/benchmarks.html
https://www.rustworkx.org/dev/benchmarks.html
http://dx.doi.org/10.1080/17489725.2020.1842923

	Introduction
	Data Collection for Geographical Based Property Graph Generation
	Comparison with the Original Method for Property Graph Generation
	Representing Path and Intersection Features in a Property Graph
	Intersection Elevation
	Ascent and Descent
	Distance
	Splitting the Nodes (Intersections)
	Calculating Intersection Angles
	Curviness of the Road
	Hilliness of the Road
	Traffic Signals
	Road Type
	Surface
	Accessibility and Usage Restrictions of Road Types in OpenStreetMap
	Directionality

	Results
	Generated Property Graph
	Process
	Dataset Download
	Server Deployment
	Data Preprocessing
	Node (Intersection) Identification
	Node Processing
	Edges (Paths) Construction
	Edge (Paths) Merging
	Removing Unused Nodes
	Splitting Intersections
	Property Graph Solutions

	Sample Route Generation

	Discussion
	Conclusions
	References

