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ABSTRACT Numerical association rule mining (NARM) is an extended version of association rule
mining that determines association rules in numerical data items through distribution, discretization,
and optimization methods. In the optimization techniques domain, numerous evolutionary and swarm
intelligence-based algorithms have been proposed to extract association rules from numerical datasets.
However, there is still a lack of comprehensive understanding regarding the performance of swarm
intelligence-based algorithms, particularly for NARM. Presently, in state-of-the-art, various swarm
intelligence-based optimization algorithms are claimed to be better based on their arbitrary comparisons
with different algorithms in different classes, e.g., swarm intelligence-based algorithms are compared
with genetic algorithms. Consequently, it becomes challenging to select the most suitable swarm
intelligence-based algorithm for NARM. This article specifically aims to address this gap by conducting
an exhaustive multi-aspect analysis of four popular swarm intelligence-based optimization algorithms
(MOPAR, MOCANAR, ACO-R, and MOB-ARM) using four real-world datasets and six key metrics:
performance time, the number of rules, support, confidence, comprehensibility, and interestingness,
aiming to demonstrate the efficiencies of the SI-based algorithms in addressing the NARM problem.
The achieved outcomes are also compared with the Apriori algorithm, which is one of the classical
algorithms for association rule mining. In our analysis, MOPAR shows low rule count with high confidence,
comprehensibility, and interestingness. MOCANAR consistently performs well across all parameters and
datasets. ACO-R generates high-quality rules but may need parameter adjustments for large datasets. MOB-
ARM is slower compared to others, and Apriori underperforms in support and time but excels in confidence.

INDEX TERMS Swarm intelligence optimization, association rule mining, machine learning, numerical
association rule mining.

I. INTRODUCTION

Numerical Association Rule Mining (NARM) represents an
evolved form of classical association rule mining (ARM)
technique developed explicitly for extracting association
rules from datasets that contain continuous values or
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numerical attributes. Due to this capability, NARM has
become increasingly relevant in numerous modern data
analysis tasks.

A. MOTIVATION
Several methods, such as optimization, discretization, and

distribution, have been proposed in the literature to extend
the capabilities of classical ARM to NARM [1], [2]. Among
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these methods, optimization is considered a potential solution
for dealing with the complexity of NARM, employing
Evolutionary-based, Swarm Intelligence (SI)-based, and
Physics-based algorithms [3]. Various SI-based optimization
algorithms have been proposed, drawing inspiration from
animal and insect movements, as well as the biological
behavior of natural objects [4], [5], [6].

These optimization algorithms are helpful for mining
association rules from numeric datasets without the need for
discretization. However, it remains unclear which algorithms
perform better for efficient NARM.

B. LITERATURE GAP

In the existing literatures [7], [8], [9], and [10], comparisons
of Sl-based optimization algorithms with other algorithms
have been conducted randomly across different classes,
without specific comparisons within their own classes.
Consequently, selecting the most suitable SI-based algorithm
for NARM becomes a challenging task. To address this
gap, we present an exhaustive multi-aspect analysis of
four popular Sl-based optimization algorithms, namely
MOPAR [7], ACO-R [8], MOB-ARM [9], MOCANAR [10]
and Apriori [11].

C. OBJECTIVE

By conducting this comprehensive analysis, we aim to
provide insights into the performance and effectiveness of
these algorithms, specifically for NARM.

In our analysis, the MOCANAR, MOB-ARM, MOPAR,
and ACO-R algorithms have demonstrated efficiency in solv-
ing multi-objective optimization problems across different
domains, including NARM and continuous optimization.

Although the MOCANAR, MOB-ARM, MOPAR, and
ACO-R algorithms are relatively new, there is a lack of
performance comparisons available in the existing literature.
Consequently, these algorithms are selected for their perfor-
mance comparison to find a set of optimal solutions that
trade off between multiple objectives simultaneously. The
performance evaluation of these algorithms will surely shed
light on their potential advantages and limitations.

D. METHODOLOGY

In this paper, we begin by examining the applicability
of the MOCANAR, MOB-ARM, MOPAR, and ACO-R
algorithms in the context of NARM. Subsequently, we con-
duct experiments using four real-world datasets to evaluate
the performance of these algorithms. The comparison is
based on six metrics and objectives: the average number
of mined rules, the average values of confidence, support,
comprehensibility, interestingness of the rules, and the
average time required to execute the algorithms.

E. CONTRIBUTIONS
The investigations conducted in this article build upon the
data gathered from a preliminary study on the performance
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of SI-based NARM algorithms [12]. This analysis serves the
purpose of bridging the existing gaps between optimization
algorithms and developing an advanced framework for
generalized association rule mining [13].

The following are the key contributions of this article.

1) Investigating the role of multi-objective optimization
algorithms, with a focus on Sl-based optimization
algorithms, in the context of NARM.

2) Conducting an exhaustive multi-aspect analysis of SI-
based algorithms, utilizing four real-world datasets and
six key metrics and objectives: performance time, num-
ber of rules, support, confidence, comprehensibility,
and interestingness.

3) Providing efficient utilization and understanding
of four popular Sl-based optimization algorithms
(MOPAR, MOCANAR, ACO-R, and MOB-ARM)
specifically tailored for NARM.

4) Providing a comparative analysis of the following four
SI-based optimization algorithms (MOPAR, MOCA-
NAR, ACO-R, and MOB-ARM) in relation to the
traditional ARM algorithm (Apriori) with regard to
NARM.

5) Contributing towards the advancement of NARM by
exploring the potential of multi-objective optimization
algorithms and addressing the associated challenges.

F. RESULTS

In our evaluations, the MOPAR algorithm demonstrates a
notable advantage in terms of producing a low number of
rules with high confidence, comprehensibility, and inter-
estingness. However, it requires parameter modifications
when dealing with datasets that have a large number of
dimensions. On the other hand, the MOCANAR algorithm
consistently delivers reliable results across all six parameters
for all datasets. The ACO-R algorithm generates high-quality
rules but necessitates parameter adjustments for datasets with
numerous attributes. Conversely, the MOB-ARM algorithm
exhibits significantly slower performance compared to the
other algorithms. Based on this analysis, it is evident that
different SI-based optimization algorithms for NARM cater
to different requirements.

The paper is structured as follows. In Sect. II, related work
is given. Sect. III highlights the background information to
understand the subject. We discuss the SI-based algorithms
in Sect. IV. Sect. V outlines the experimental results and
multi-aspect analysis of the four SI-based algorithms and
one traditional Apriori algorithm. Sect. VI provides the
challenges and future directions for the algorithms. The
conclusion is given in Sect. VIL

Il. RELATED WORK

In data mining [14], ARM is a well-known technique to find
interesting relations among various data items. Agrawal [15]
introduced ARM in 1993 to discover the associations between
data items in market basket analysis. Later, some essential
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algorithms, such as Apriori [16] and FP-Growth [17], were
proposed. These algorithms were suitable for binary data
but could not deal with numerical data. In 1996, Srikant
introduced the concept of quantitative association rule mining
(QARM) [11] to deal with numerical data. Further, this
technique is also known as NARM [1]. Several methods,
such as optimization, discretization, and distribution, are
available in the literature to solve the problem of NARM [1]
and [2]. The optimization method seems to be a potential
solution to deal with such complex problems. Evolutionary-
based and SI-based algorithms come under the optimization
method [3]. Recent NARM optimization algorithms also
cover Sl-based algorithms, which are based on animal and
insect movements [18] and the biological behavior of natural
objects [5]. In recent decades, bio-inspired computation [19]
has been one of the most researched subfields of artifi-
cial intelligence. SI-based algorithms are the subcategory
of nature-inspired algorithms. Particle swarm optimization
(PSO) [20], ant colony optimization (ACO) [21], cuckoo
search (CS) [22], bat-inspired algorithm (BA) [23], crow
search (CSA) [24], wolf search (WSA) [25] are some
examples of various SI algorithms. The variants of these
algorithms were used for solving NARM problems. Such
as, in 2008, Alatas and Akin [26] used the PSO algorithm
for mining the association rule with numeric attributes.
The PSO was modified to search the numeric attributes’
intervals and discover the numeric association rules. Further,
Coello et al. [27] extended PSO to handle multi-objective
issues. In the same way, Ledmi et al. [28] used the crow
search-based algorithm for NARM. A multi-objective PSO
technique using an adaptive archive grid for NARM was
proposed by Kuo et al. [29]. It is based on the Pareto-optimal
technique as well. Recently, Stupan and Fister [30] presented
a minimalistic framework NiaARM for NARM, which is
the extended version of the ARM-DE [31] algorithm. Users
can preprocess their data using the NiaARM framework and
use a variety of interest measures. The numerical association
rule miner proposed by Fister et al. [32] combines the offline
uARMSolver [33], which is part of the Red Al class, with the
recently created OnlineNARM miner, which is part of the new
Green Al In the literature, a performance analysis of several
NARM algorithms was conducted. Varol Altay and Alatas [1]
analyzed the performance of seven evolutionary and fuzzy
evolutionary NARM algorithms. The chosen algorithms were
also compared against the apriori algorithm. A comparative
analysis was done in terms of support, confidence, the
number of rules mined, the number of records covered, and
time spent using eleven real-world datasets. This research
found that the evolutionary algorithms have better results in
terms of support, confidence, and time metrics. The authors
also performed a performance analysis of multi-objective
evolutionary NARM algorithms in [34]. In this research,
six multi-objective and four single-objective optimization
algorithms were chosen to be compared. The number of rules,
coverage percentage, support, confidence, conviction, lift,
netconf, ylesQ, and certain factor measures were used for

VOLUME 12, 2024

comparative analysis. Ten real-world datasets were used. This
research found that multi-objective algorithms outperformed
single-objective algorithms in terms of support, lift, certain
factors, netconf, and yulesQ metrics. The measures netconf
and yulesQ are generally used to quantify the rule’s level of
interest or relevance to the user.

An example of using NARM for real-world problems
was presented in [35], which performed an association
analysis of multi-objective NARM algorithms using data
about Parkinson’s disease. This research used numerical
data consisting of speech samples related to Parkinson’s
disease. This data was used on three multi-objective NARM
algorithms to find association rules related to healthy
individuals and patients with Parkinson’s disease.

Another example of using NARM for real-world problems
was presented in [36], which presented an association
analysis of multi-objective NARM algorithms using data
about liver fibrosis. This data was used on two multi-objective
NARM algorithms to find association rules related to liver
fibrosis. In this article, a sensitivity analysis was done
to find the best parameters for this problem. A recent
exhaustive review of more than five hundred nature-inspired
metaheuristic algorithms and a performance assessment of
fifteen algorithms has been conducted in [37].

Ill. BACKGROUND

A. ASSOCIATION RULE MINING

ARM aims to extract interesting correlations, frequent
patterns, or associations among sets of items in mainly
transactional databases. One application of ARM is to find
out what products are bought together from a store [15].
The discovered association rules can help determine how
to boost the sales of a product, what products may be
impacted by the discontinuation of another product, and the
best locations for the products. Let I = {i1, iz, i3, ... 0y} be
a set of different m data items and D be a set of transactions
where each transaction 7' contains a non-empty set of items,
T < I. A transaction T contains X, which is a set of
some items in / if X < T. An association rule is an
if-then relationship and denoted by X = Y that has an
antecedent X, and a consequent part Y, where X C 1,
Y Cc ITand X NY = ¢ [16]. Support and confidence are
the most commonly used measures in ARM. The support of
an itemset X determines how frequently the itemset appears
in a transactional database. The confidence of an association
rule X = Y determines how frequently items in Y appear in
transactions that contain X .

B. NUMERICAL ASSOCIATION RULE MINING

NARM came into the scenario to extract association rules
from numerical data. Unlike a classical ARM, a numerical
ARM allows attributes to be either categorical (e.g., gender,
education) or numeric (e.g., salary, age) rather than just
Boolean. A Numerical association rule is an implication of
the form X = Y, in which both antecedent and consequent
parts are the set of attributes in the forms A = {vy, vo, ... v}
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if A is a categorical attribute, or A € [v1, v2] if A is numeric
attribute.

An example of a numerical association rule is given in (1).
Here, Support is 10% and Confidence is 70%. This rule states
that ““10% of the employee are males aged between 25 and 35,
and their salary would be between $2,000 and $2,500”" while
“70% of males aged between 25 and 35 are earning between
$2,000 and $2,500.”

Age € [25, 35] A Gender: [Male] = Salary € [2, 000, 2, 500]
()

Here, Age and Salary are numerical attributes, and Gender
is a categorical attribute. In ARM, except for support and
confidence, more than fifty measures of interestingness are
available in the literatures [38], [39]. This article mainly uses
support, confidence, comprehensibility, and interestingness
measures.

The support of an association rule X = Y is calculated as
the percentage of transactions of the total records containing
both itemsets X and Y, shown in (2).

S X UY)
upport(X = Y) = T 2
The confidence of a rule, X = Y, is described as the
percentage of transactions that contain itemset X also contain

itemset Y, shown in (3).

Conti X UY)
onfidence(X = Y) = T 3)
According to [40], if the number of conditions involved
in the antecedent part is less than the consequent part, the
rule is more comprehensible. Eq. (4) is used to calculate the
comprehensibility of an association rule. Here, |Y| represents
the number of attributes in the consequent part of the rule, and
|X UY | shows the number of attributes in both the antecedent
and consequent parts of the rule.
o log(1 + Y1)
Comprehensibility(X = Y) = log(1 11X UY]) “4)
The interestingness measure is focused on discovering
hidden information by extracting interesting rules. Eq. (5)
consists of three parts; the first part shows the probability of
generating the rule based on the antecedent part, the second
part shows the probability based on the consequent part and
the third part shows the probability of not generating the rule
based on the whole dataset.

S t(XUY
Interestingness(X = Y) = Support(X U ¥)

Support(X)
Support(X UY) Support(X UY)
—_— x|l - — 5)
Support(Y) |D|

1) MULTI-OBJECTIVE NARM

A single objective optimization problem has just one objec-
tive function; however, when many objective functions are
used, the process is referred to as multi-objective [41]. Multi-
objective optimization aims to balance several conflicting
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Step 1: Initialize the population

Step 2: Evaluate solutions

Step 3: For iteration in max iterations
Step 4: Modify solutions

Step 5: Evaluate modified solutions
Step 7: Return the best solutions

LISTING 1. Pseudo code of nature-inspired meta heuristic algorithm.

performance measures by using a set of non-dominated solu-
tions [42]. The weighted sum and Pareto dominance are two
methods for solving multi-objective optimization problems.
The weighted sum method is a classical multi-objective
method that summarizes multiple objectives into a single
objective by multiplying each objective with a pre-defined
weight. Traditional evolutionary algorithms optimize the
resulting single-objective function. It is the simplest multi-
objective method, but finding suitable multipliers can be
challenging. However, all the objectives are evaluated
simultaneously in the Pareto dominance method [43]. One
solution dominates another if it improves one objective
without causing a worse outcome for all the other objectives.
Using this dominance criterion, non-dominated solutions can
be defined.

IV. SWARM INTELLIGENCE OPTIMIZATION ALGORITHMS
Optimization methods offer a robust and efficient approach
to tackling large search spaces, and they can be classified
into biology-inspired and physics-based methods. Among the
biology-inspired methods, ST and evolution-based algorithms
are particularly prevalent and widely used [1], [2]. It is
important to note that SI-based algorithms fall within the
category of bio-inspired algorithms, which in turn belong to
the broader category of nature-inspired algorithms [44].

As stated in Bonabeau et al. [45], SI-based optimization
methods draw inspiration from the collective intelligence and
group behavior observed in self-organized groups, such as
swarms of birds, fish, honey bees, and ant colonies. These
algorithms consist of individuals who navigate the search
space through simulated interactions. Various SIl-based
algorithms have gained popularity for addressing several
optimization problems, including recent advancements in
solving NARM problems. The most popular SI-based algo-
rithms for NARM are PSO and ACO. The Bat Algorithm and
the Cuckoo Search Algorithm are also part of the family.

Below is an example of pseudocode List 1 for a nature-
inspired meta-heuristic algorithm, outlining the general steps.
In this algorithm, a population of agents is initialized with
random solutions. The solutions are evaluated based on the
defined objectives. Subsequently, each agent modifies its
solution iteratively until a specified stopping criterion is met.
Finally, the best-generated solutions are returned.

The following two key elements must be addressed when
employing a nature-inspired population-based algorithm to
solve the ARM.

1) The representation of solutions in the search space
2) Fitness function assessment
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The first element involves describing the encoding of
solutions in the search space, while the second element
focuses on assessing the quality of solutions.

A solution must be encoded to mine numerical association
rules in the search space. There are two well-known
approaches to representing individuals: Michigan and Pitts-
burgh. When using the Michigan approach for representing
individuals, each individual encodes a single association rule,
while in the Pittsburgh approach, each individual encodes
a set of association rules [5]. The Michigan approach is
comparatively better than the Pittsburgh approach for finding
high-quality rules. In the Michigan approach, different types
of individual representation are identified.

The first representation of encoding the association rules
in NARM is shown in (6). The rule is encoded as a vector
of attributes with n number of triplets, where 7 is the total
number of attributes in the transactional database. Each triplet
consists of three elements. Here, ACN determines whether
the attribute is present in the antecedent or consequent of the
rule or not present in the rule at all. Furthermore, / determines
the lower bound of the attribute and u determines the upper
bound of the attribute [5].

(ACNla lla ul)’ L} (ACN}’H li’“ Ml’l)) (6)

Another way to represent a rule as a vector is shown in (7).
Here, s represents the value, and § represents the standard
deviation of the attribute [8].

((ACNy, 51, 61), ..., (ACNy, 54, 6)) @)

The ACN element can be encoded in two different ways.
In the first way, if the ACN; (where j = 1 to n) value is less
than or equal to 1/3, then the attribute is in the antecedent
part of the rule. If the value is greater than 1/3 and smaller
than or equal to 2/3, then the attribute is in the consequent
part. If the value is greater than 2/3, then the attribute is not
present in the rule.

The second way to encode is used in [10]. Cuckoos in
ARM are represented using a 2D array. The array has n
columns, indicating the number of features in the dataset, and
3 rows. The first row indicates the feature’s location in the
current association rule, with 0 meaning the feature is absent,
1 denoting it is in the antecedent, and 2 indicating it is in the
consequent. The second and third rows represent the lower
and upper bounds of the feature values in the association rule,
respectively.

Another way to represent an association rule is used in [9].
Each solution X represents a rule with vector S and comprises
k items, resulting in a total of k + 1 positions. In this vector,
S[0] functions as the separator between the antecedent and
the consequent of the rule. If the iy, item in the database is
included in the rule, then position k contains i; otherwise,
the position contains zero, where 0 < k < n + 1, with
n being the total number of items in the database. For
example, with the set of items I = iy, 2, ..., 19, the rule
X1 =3,1,5,0,6,2,0,0,7,0, 0 represents the rule iy, is =
ig, 2, 17.
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A. PARTICLE SWARM OPTIMIZATION ALGORITHM (PSO)
PSO is the most popular optimization method for continuous
non-linear functions, which simulates the movement of bird
flocks or fish schools [20], [46]. Just as bird flocks move
around in search of food in the sky and adjust their speed and
position based on the group’s direction and food availability,
PSO artificially replicates this behavior.

A swarm consists of N particles that traverse a
D-dimensional search space. During the search, each particle
continually adjusts its position towards the global optimum
by considering two factors: its personal best position (referred
to as pbest), which is the best position it has encountered so
far, and the global best position (referred to as gbest), which is
the best position found by the entire swarm [26]. The velocity
and position of the particles are calculated iteratively to find
the optimum solution.

1) MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION
ALGORITHM FOR ASSOCIATION RULES MINING (MOPAR)
The Multi-Objective Particle swarm optimization algorithm
for Association Rules Mining (MOPAR) is a multi-objective
PSO (MOPSO) algorithm based on Pareto optimality for
extracting numerical association rules in one step. The
algorithm utilizes three objectives: confidence, comprehen-
sibility, and interestingness.

The algorithm’s steps are based on the research con-
ducted by Beiranvand et al. [7] and are presented in detail
in Algorithm 1. In the algorithm, each candidate rule is
represented as a particle X;(¢), where i ranges from 1 to n,
by an m-dimensional vector. The iy, particle X;(z) at time
t can be expressed as X;(t) = [x;1(f), ..., x;m(?)], where
xik(t)el[Lj, Ujl, with 1 < j < m, indicating the position of
the iy, particle for the kg, attribute or dimension.

The velocity of the iy individual at iteration ¢ is defined
as an m-dimensional vector V; = (—=vi1,Vi2,...,Vim),
where v; x denotes the velocity component of the iy, particle
concerning the ky; dimension. The velocity of the iy,
particle is constrained to a maximum velocCity Viy.,x =
(Vimax.1> Vimax.2» - - - » Vimax.m), Where i ranges from 1 to n [7].

The population consists of particles, the external repository
holds the mined rules, and the global best (the best particle)
is initialized. In each iteration, the particle population is
updated. Subsequently, the best solutions from the population
are added to the external repository, and the global best
solution is updated. Finally, after the iterations, the external
repository is returned. To update particles, (8) and (9) are used
to update the velocities and positions of a particle. After that,
the particle’s objectives are evaluated. Finally, the local best
solution of each particle is updated using Pareto dominance.

vik(t + 1) = wt)vir(t) + clocaRiocal (Ibesti x (£) — xi k(1))
+ Cglobalelobal (gbeSti,k(I) - xi,k(t) (8)
Xik(t + 1) = xi k(1) +vik (@ + 1) )

To determine the global best solution, roulette wheel
selection is employed. Initially, the roulette wheel assigns
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Algorithm 1 MOPAR Algorithm

Input: Data, population size, maximum iterations, external
repository Size, Clocal, Cglobal, inertia weight, xRank

QOutput: External repository

Initialize population.

Evaluate the objectives of the generated rule.

Initialize external repository.

Initialize global best.

Update the velocities of particles.

Update the positions of particles and evaluate the

objectives of the new rules.

7: Update the non-dominated local set of each particle.
Update local best.

8: Update external repository. If the size of the external
repository is larger than the external repository size,
remove particles that dominate more rules.

9: Update global best using the roulette wheel selection.
If the maximum number of iterations is not reached, go to
Step 2.

10: return the external repository.

AN AT

a rank r; to each particle using (10), with xppx denoting
a user-specified parameter, and njocal_dominated 1S the local
dominated count representing the number of local best
solutions dominated by the current solution. Subsequently,
each particle i is assigned a probability P; according to (11).
Based on these probabilities, a particle is selected.

ri(t) = _ Aramk (10)
N]ocal_dominated
ri(t)
Pi(t) = ————= (11)
D ket Tk()

The MOPAR algorithm introduces a modified version
of the MOPSO algorithm, which includes redefined lbest
(local best) and gbest (global best) particles, as well as a
selection procedure designed to address the challenges of
NARM. In this algorithm, each particle is represented in
a similar manner to the rough particle swarm optimization
algorithm (RPSOA) and incorporates lower and upper bounds
for intervals.

B. CUCKOO SEARCH ALGORITHM

The cuckoo search algorithm (CSA), proposed by Yang
and Deb in 2009 [22], draws inspiration from the brooding
parasitic behavior observed in cuckoo species. Unlike other
birds, cuckoos do not construct nests but instead lay their eggs
in the nests of other bird species, employing their remarkable
ability to mimic the color and pattern of the host birds’ eggs.
Some host birds may detect the presence of foreign eggs
and either discard them or abandon their nests. The CSA
follows three key rules. Firstly, cuckoo birds lay only one
egg at a time, selecting a nest at random. Secondly, nests
containing high-quality eggs have a higher chance of survival
and are carried over to the next generation. Lastly, the number
of host nests remains fixed, and the probability of a host
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bird discovering cuckoo eggs is either 0 or 1. If a host bird
identifies a cuckoo egg, it can choose to destroy the egg or
abandon the nest.

In the context of ARM, Kahvazadeh and Abadeh [10]
extended the concept of the multi-objective cuckoo search
algorithm to tackle NARM using a Pareto-based approach.
In this algorithm, each egg in the nest represents a solution,
and a new solution is introduced when a cuckoo lays an egg.
The objective is to utilize these new and potentially superior
solutions to replace less promising solutions within the nest.

1) MULTI-OBJECTIVE CUCKOO SEARCH ALGORITHM FOR
NUMERICAL ASSOCIATION RULE MINING (MOCANAR)

The multi-objective cuckoo search algorithm for numer-
ical association rule mining (MOCANAR) proposed by
Kahvazadeh and Abadeh [10] is a powerful method that
utilizes Pareto principles to extract high-quality association
rules from datasets with numeric attributes. Inspired by the
brooding parasitic behavior of cuckoo species, this algorithm
mimics the natural process in which cuckoos lay their eggs
in other bird species’ nests. In MOCANAR, the ARM
problem is represented using a 2D array, which serves as
the “cuckoos” in the algorithm. The columns of the array
correspond to the attributes present in the dataset, while the
number of rows is fixed at three. The first row of the array
indicates the location of each attribute within the association
rule. A value of O signifies that the attribute is not included
in the rule, a value of 1 indicates that the attribute belongs
to the antecedent part of the rule, and a value of 2 indicates
that the attribute belongs to the consequent part of the rule.
The second and third rows of the array represent the lower
and upper bounds of the corresponding attribute, respectively.
The parameters wy, wo, and w3z determine the length of steps
in the three rows of the cuckoo, guiding its movement toward
a better position. Higher values for these parameters result in
an increase in step length, facilitating faster convergence due
to the larger steps taken.

In MOCANAR, multiple objectives are considered to
guide the search for high-quality association rules. These
objectives include support, confidence, interest, and compre-
hensibility, which collectively contribute to the evaluation of
the rules. The rules are retrieved incrementally during the
algorithm’s iterations, with a focus on generating a small
number of high-quality rules at each step.

The extraction of non-dominated rules is achieved through
Pareto optimality. The algorithm’s steps, based on the
work by Kahvazadeh and Abadeh [10], are presented in
Algorithm 2.

The algorithm begins by initializing the population, which
consists of cuckoos and the current set of non-dominated
rules. Each increment involves the initialization of the
population. Within each generation, random cuckoos are
generated and directed towards the best solution, employing
the levy flight policy proposed by Yang and Deb [22]. The
worst cuckoos in the population are replaced with these newly
generated cuckoos. Subsequently, each cuckoo generates an
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Algorithm 2 MOCANAR Algorithm Steps

Input: Data, population size, number of increments, maxi-
mum generations, pa, pmut, number of tournaments, number
of random cuckoos, wi, wa, w3

Output: Final non-dominated rules

1: Initialize the population and cuckoo eggs. Evaluate the
objectives of the generated rules.

2: Generate random cuckoos and direct them towards the
best cuckoo in the population using the levy flight policy.
Replace the worst cuckoo in the population with the
directed cuckoo.

3: Generate cuckoo eggs by directing all cuckoos in the
population towards the best cuckoo, which is chosen
through a tournament selection process.

4: Eliminate a percentage of the worst eggs based on the
support measure. Form a new population by selecting
cuckoos with the best objective measures.

5: Merge the population and non-dominated lists, removing
any duplicated rules. Assign the non-dominated rules
from the merged list to the non-dominated list.

6: If the maximum number of generations is not reached,
g0 to step 2.

7: Add the rules from the non-dominated list to the final
non-dominated list.

8: If the maximum number of increments is not reached,
go to step 1.

9: Remove duplicated and dominated rules from the final
non-dominated list.

10: return the final non-dominated list.

egg using levy flight. At the end of each generation, the
current set of non-dominated rules is updated. This process
continues until the final increment, where the final set of
non-dominated rules is updated. Finally, the algorithm returns
the final non-dominated rules.

To choose the best solution when generating eggs,
a tournament selection process is employed. A certain
number of tournament cuckoos are randomly selected from
the population, and a random non-dominated solution is
chosen from this selection. A levy flight policy is utilized
to guide the movement of cuckoos towards the best cuckoo.
For each attribute of a source cuckoo’s rule, three-step sizes
are calculated using the levy distribution and a target cuckoo.
These step sizes are then used to modify the rule of the source
cuckoo.

To generate a new population, an elimination process is
performed on a percentage of eggs with the worst support
measure. Afterward, the eggs and the cuckoo population
are merged into a temporary population. The temporary
population is sorted based on the support measure, and
the top 1/4 of the highest-ranking solutions are added to
the new population. The same process is repeated for the
remaining measures, resulting in the formation of a new
population.
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C. ANT COLONY OPTIMIZATION ALGORITHM

Ant colony optimization (ACO) is based on the foraging
behaviour of various ant species. Ants begin to investigate
the area around the nest at random and eventually find some
food sources. Based on the quantity and quality of food, these
ants deposit chemical pheromones on the ground to suggest
the desired path for colony members to follow on their return
trip [21]. In ACO, a group of artificial ants develops solutions
to the optimization problem and communicates information
about the quality using a communication mechanism similar
to real ants.

There are several variations and extensions of the ACO
algorithm that have been developed to address different
problem domains. The commonly used ACO algorithm for
NARM is ACO-R.

1) ANT COLONY OPTIMIZATION FOR CONTINUOUS
ATTRIBUTES (ACO-R)

The ACO-R algorithm is a variant of ACO specifically
designed for retrieving association rules from numerical
attributes without minimum support and minimum confi-
dence thresholds. ACO-R differs from ACO in its approach
to probability distributions and pheromone storage.

In ACO-R, a probability density function is used instead of
a discrete probability distribution to describe the pheromone
distribution over the search space. The solution archive size,
denoted as k, is used to store the pheromone information.
The solution archive is represented as a matrix, where each
entry is denoted by s]’ Here,i = 1,2, ..., n corresponds to
the number of dimensions, andj = 1, 2, ..., k represents the
number of rows in the matrix.

The ants in ACO-R move across the archive by selecting
one row based on its associated weight (w). A new solution is
then generated by sampling the Gaussian function (g) of the
values of each dimension in the selected solution.

The numeric attributes are represented as dimensions of the
solution archive, divided into three sections. Each complete
solution in the archive represents a numeric association rule.
The first part of the solution represents the antecedent or
consequent of the rule, the second part represents the value,
and the third part indicates the standard deviation, which is
used to construct numeric attribute intervals.

ACO-R utilizes Gaussian functions to identify attribute
intervals that correspond to interesting rules, with the
function determining the frequency and length of the
intervals. The objective function in ACO-R consists of
four components, as defined in (14). The first component
represents the support for the rule, indicating its importance.
The second component represents the confidence value.
The third component represents the number of attributes
in the rule. The last component penalizes the amplitude of
the intervals that adhere to the itemset and rules.

The pheromone update technique in ACO-R involves
adding a number of new solutions generated by the ants and
removing an equal number of poor solutions from the archive.
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Algorithm 3 ACO-R Algorithm Steps

Input: Data, archive size, ant colony size, maximum
iterations, o1, oy, a3, &4, 05, ¢, €

Output: Archive

1: Initialize and sort the archive.

2: Initialize weights, probabilities, and ants.

3: Each ant chooses a solution and generates a new solution
by sampling a Gaussian function. Evaluate the objectives
of the new solution.

4: If the number of ants that have generated a new rule has
not reached the ant colony size, go to step 3.

5: Add the solutions generated by the ants to the archive,
then sort and cut off the archive to the specified size.

6: If the maximum number of iterations has not been
reached, go to step 2.

7: Remove duplicated rules from the archive.

8: return Non-dominated rules from the archive.

The solutions are ranked to maintain the best solutions at the
top of the solution archive. In each execution of ACO-R, the
best solution can be considered as a rule.

The algorithm follows the steps outlined in Algorithm 3
based on Qodmanan et al. [8].

Initially, the archive is initialized with a set of solutions,
and these solutions are ranked based on their objective
values. In each iteration of the algorithm, the weights and
probabilities of the solutions in the archive are calculated.
Each ant selects a solution from the archive based on
the assigned probabilities and generates a new solution by
sampling a Gaussian function. At the end of each iteration,
the solutions in the archive are ranked again, and the worst
solutions are removed from the archive. This process helps
maintain a diverse and high-quality set of solutions in the
archive. After completing the specified number of iterations,
the final archive, which consists of the remaining solutions,
is returned as the output of the ACO-R algorithm.

The interval objective, shown in (12), favours rules with
smaller intervals. Here, n is the number of attributes,
maxbound and minbound are the maximum and minimum
values for the attribute in the database. UB; and LB; are the
upper and lower bounds of an attribute in the rule. The upper
and lower bound of the intervals can be calculated by adding
a coefficient of a standard deviation to the value of solution
s} using (13).

n
UB; — LB,
Interval = Z (UB; i (12)

. maxbound; — minbound;

=

UBi:s;+a5-G and LB,-=sji»—0t5~0 (13)

All the mentioned objectives are put together into a single
objective function, shown in (14). Here o1, a2, a3, and a4 are
user-specified input parameters and one might increase or
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decrease the effects of parts of function.

objective = a1 - Support + «; - Confidence — o3

- Interestingness — a4 - Interval (14)
1 —(=1)
w; e 24°k? (15)

TN

To calculate the weight w; of a solution S, (15) is used:
In (15), k represents the number of solutions in the archive, j
is the rank of the solution, and ¢ is a user-specified parameter.
The weight w; is determined based on the rank of the solution.
A smaller value of g leads to a higher preference for the best-
ranked solutions, while a larger value of g results in a more
uniform probability distribution.

To calculate the probability p; of choosing solution S;, (16)
is used: In (16), the weight w; of the solution §; is divided
by the sum of the weights of all the solutions in the archive.
This calculation yields the probability p;, which represents
the likelihood of choosing solution §; during the solution
selection process.

= (16)
D Sy

After an ant chooses a solution based on the probabilities,
anew solution is sampled using (17): In (17), (new represents
the new value of the chosen solution, u represents the value
of the chosen solution and § is calculated using (18).

—(x—w)?

e 22 a7

1
P(x) = g(x, i, 8) o
In (18), & represents the perturbation value added to
the chosen solution, & is a user-specified parameter that
controls the magnitude of the perturbation, k is the number
of solutions in the archive, and si and s]’: are the values of the
solutions S, and S; respectively.

0=E2 (18)

D. BAT ALGORITHM
The BAT algorithm (BA) was introduced by Yang in 2010 as
a method for solving continuous constrained optimization
problems inspired by the echolocation behavior of micro-
bats [23]. Microbats possess the remarkable ability to use
echolocation to sense distances. By emitting high-frequency
sound pulses and listening to the echoes reflected from
objects in their environment, they can navigate, locate prey,
avoid obstacles, and find shelter even in darkness.

The BAT algorithm mimics this behavior by employing
a population of virtual bats. Each bat represents a potential
solution to the optimization problem. Similar to microbats,
virtual bats have attributes such as position, velocity, fre-
quency, wavelength, and loudness. During the optimization
process, the bats explore the search space by adjusting their
positions and velocities based on their current locations
and the locations of the best solutions discovered so far.
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Algorithm 4 MOB-ARM Algorithm Steps

Input: Data, population size, iterations, Pareto points, «, 3,
¥, 8, minimum support, minimum confidence Output: Non-
dominated solutions

1: Initialize the population and sort it. Initialize the
global best solution. Initialize the list of non-dominated
solutions.

2: Initialize the weights.

3: Update the frequency and velocity of each bat in the
population and generate a new rule.

4: If a randomly generated number is greater than the bat’s
rate, modify one attribute in the new rule.

5: Check and fix the rule. Evaluate its fitness.

6: If the new objective value is better than the old one,
accept the new rule, increase the bat’s rate, and decrease
its loudness.

7: Sort the population and update the global best solution.

8: If the maximum number of iterations is not reached, go to
step 3.

9: Add the best solutions to the list of non-dominated
solutions.

10: If the desired number of Pareto points is not reached,
go to step 2.

11: return Non-duplicated rules from the list of non-
dominated solutions.

The frequency of a bat remains fixed, while its wavelength
and loudness change dynamically. The wavelength affects
the step size of the bat’s movements, while the loudness
influences the rate at which the bat emits sound pulses.

BAT algorithm has also been applied to ARM tasks involv-
ing categorical attributes [47]. By adapting the principles of
echolocation and the bat’s behavior, the BAT algorithm offers
a unique approach to discovering association rules in datasets
containing categorical attributes.

1) MULTI-OBJECTIVE BAT ALGORITHM FOR NARM
(MOB-ARM)

The multi-objective bat algorithm for NARM (MOB-ARM)
proposed by Heraguemi et al. in [9] is inspired by the behavior
of microbats. The algorithm aims to optimize two global
objective functions to extract interesting rules using four
quality measures: support, confidence, comprehensibility,
and interestingness. The first objective function combines
support and confidence measures, as shown in (21). It rep-
resents the importance of the association rule based on the
rule’s support and confidence values. The second objective
function combines comprehensibility and interestingness
measures, as shown in (22). It captures the trade-off
between generating comprehensible rules and maximizing
their interestingness. The algorithm follows three main steps:
initialization, searching for non-dominance solutions for the
Pareto points, and searching for the best solution for each
bat at the Pareto point. The rule encoding in this algorithm
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follows the Michigan approach. Bats are initialized with
random frequencies and velocities.

Prior to applying the algorithm, the input data is discretized
into intervals. The algorithm utilizes a weighted sum
approach to determine the best solutions. The steps of
the algorithm are outlined in Algorithm 4, as given by
Heraguemi et al. [9]. The algorithm begins by initializing a
population consisting of bats. In each iteration, objective
weights are generated, and the frequency, velocity, and rules
of each bat are updated. At the end of each iteration,
the bats are ranked, and a new global best solution is
selected. After each iteration, the best solution of each
bat is recorded as a non-dominated solution. Finally, the
non-dominated solutions are returned as the output of the
algorithm. To generate the objective weights, (19) is utilized.
In this equation, the value of k represents the number of
objectives used, which in the case of MOB-ARM is two.
These weights are employed in the calculation of an objective
measure, as depicted in (19), which incorporates the two
objectives.

k
S wm=1 19)

k=1
Obj(R) = w) - Obj;(R) + w, - Obj,(R) (20)

The objective measure in the MOB-ARM algorithm
considers two distinct objectives, each computed using (21)
and (22). These equations incorporate user-defined param-
eters «, B, vy, and § as weights assigned to the support,
confidence, comprehensibility, and interestingness measures,
respectively and R is a rule X = Y. By adjusting these
weights, the algorithm can prioritize different aspects of rule
quality during the optimization process.

-S t(R
Obj,(R) = - Confidence(R) + P20 ®) 5 51
o
Obj,(R) = y - Comprehensibility(R)
8 - Interestingness(R)
+ +6 (22)

14

To update a bat’s frequency and velocity in the MOB-ARM
algorithm, (23) and (24) are employed. The new frequency
is determined by computing the maximum frequency, which
corresponds to the number of attributes in the dataset. Subse-
quently, the new velocity is computed using the maximum
frequency, the new frequency, and the previous velocity.
These update equations enable the bats to dynamically adjust
their exploration and exploitation capabilities during the
optimization process (here, i is the index for individual bats
within the population).

[ =14 (fnar)B (23)
Vi = fouar — f = V7! (24)
AT = oAl (25)
rl.H'1 = rlQ[l —exp(—y1)] (26)
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TABLE 1. Datasets used in the experiments.

Dataset #records  #attributes Description

Basketball 96 5 This dataset includes a variety of numerical attributes related to the performance of
basketball teams and players to identify patterns and relationships.

Quake 2178 4 This dataset is used to demonstrate the use of various smoothing techniques in statistics.
The dataset contains a time series of the number of earthquakes that occurred in California
between the years 1980 and 1984.

Fat 225 18 This dataset contains the percentage of body fat, age, weight, height, and 10 measurements
of body circumference (such as the abdomen) for a total of 252 men.

Longley 16 7 The Longley dataset comprises a number of strongly collinear US macroeconomic

indicators. It has been used to assess the precision of least squares methods.

TABLE 2. Algorithmic parameters used in the experiment.

Algorithms Parameters

MOPAR [7]
xRank: 13.3, c1:2,¢c2: 2
MOCANAR [10]

Population size: 50, iterations: 200, external repository size: 50, inertia weight: 0.63, velocity: 3.83,

Population size: 50, generations: 200, increments: 1, randomcuckoo: 1, tournament: 30, Pa: 0.3,

P_mut: 0.05, wl: 0.2, w2: 0.5, w3: 0.3

MOB-ARM [9]
minsupp: 0.2, minconf: 0.5
ACO-R [8]
0.001, Q: 0.1, E: 0.85

Population size: 50, iterations: 40, Pareto points: 5, alpha: 0.4, beta: 0.3, gamma: 0.2, delta: 0.1,

Ant colony size: 50, iterations: 200, archive size: 50, alphal, alpha2: 4, alpha3, alpha5: 1, alpha4:

In the MOB-ARM algorithm, a new rule is generated
using a method proposed in [47]. The generation process
takes into account the velocity, frequency, and loudness of
the bat. The velocity determines the starting position in
the rule where changes will be made, while the frequency
determines the number of attributes that will be modified. The
algorithm introduces variability and exploration by randomly
modifying rule attributes, ensuring a diverse search in the
solution space.

If the new rule’s objective is superior to the previous
objective, the rule is accepted, and the bat’s loudness and
rate are updated. The loudness is decreased according to (25),
while the rate is increased using (26). In (26), r,.o represents
the initial rate of the bat, and ¢ denotes the current iteration,
as described by Yang [23].

V. EXPERIMENTAL RESULTS
To assess the performance of the MOPAR, MOCANAR,
ACO-R, MOB-ARM and Apriori algorithms, four real-world
datasets from Guvenir et al. [48] are chosen. Table 1 provides
a detailed description of these datasets, which vary in the
number of records and attributes. This diversity allows for
a comprehensive evaluation of the algorithms’ effectiveness
in handling different dataset characteristics. The experiments
are conducted on a machine with an Intel Core i7-10510U
processor, 16 GB of memory, and running Windows 10.

Table 2 presents the parameter settings for the four
SI-based algorithms used in this experiment. To ensure a fair
comparison, the population size is fixed at 50, and the number
of iterations is set to 200 for all algorithms.

The MOPAR algorithm adopts an external repository
size of 50, and the remaining parameters are taken from
Beiranvand et al. [7]. As for ACO-R, the parameter values
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are determined through testing, as the original authors,
Qodmanan et al. [8], did not specify the optimal parameters.
The MOB-ARM algorithm employs 40 iterations and aims to
obtain 5 Pareto points. Each algorithm is tested five times on
each dataset. The programming code for these algorithms is
available in the GitHub repository.'

Table 3 displays the average support values obtained by the
four SI algorithms and the Apriori algorithm across the four
datasets. Fig. 1 visually represents the average support values
of the mined rules generated by these algorithms. Among
the algorithms, MOCANAR consistently yielded rules with
high support across most of the datasets. ACO-R also
produced rules with high support in the Basketball, Quake,
and Longley datasets, but it performed relatively poorer in
the Fat dataset. MOB-ARM achieved average support values
across all datasets. The Apriori algorithm, on the other hand,
achieved a lower average support value compared to the
other algorithms. Meanwhile, MOPAR exhibited the lowest
support values overall, indicating that it discovered relatively
fewer itemsets with high occurrence rates.

Table 4 provides the average confidence values derived
from the SI and the Apriori algorithms for the four datasets.
Fig. 2 visually presents the average confidence values of the
rules generated by these algorithms. MOCANAR and ACO-R
consistently achieved the highest confidence results across all
datasets. On the other hand, MOPAR and MOB-ARM yielded
average confidence values, but they exhibited the lowest
confidence in the Fat and Basketball datasets, respectively,
when compared to the other algorithms. However, the Apriori
algorithm has achieved a commendable average confidence
value.

1 https://github.com/rahul-sharmaa/Performance-Analysis-of-SI-based-
Algorithms.git
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TABLE 3. Average support of the MOPAR, MOCANAR, ACO-R, MOB-ARM and apriori algorithms with respect to the ‘Basketball’, ‘Quake’, ‘Fat’ and ‘Longley’

datasets.

Datasets MOPAR [7] MOCANAR [10] ACO-R [8] MOB- Apriori [16]
ARM [9]
Basketball 0.13 0.49 0.41 0.28 0.16
Fat 0.08 0.63 0.01 0.34 0.16
Quake 0.22 0.51 0.57 0.45 0.24
Longley 0.10 0.29 0.35 0.28 0.19
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FIGURE 1. Average support of MOPAR, MOCANAR, ACO-R, MOB-ARM and Apriori algorithms with respect to the

‘Basketball’, ‘Quake’, ‘Fat’ and ‘Longley’ datasets.

TABLE 4. Average confidence of the MOPAR, MOCANAR, ACO-R, MOB-ARM and apriori algorithms with respect to the ‘Basketball’, ‘Quake’, ‘Fat’ and

‘Longley’ datasets.
Datasets MOPAR [7] MOCANAR [10] ACO-R [8] MOB- Apriori [16]
ARM [9]
Basketball 0.78 0.80 0.80 0.63 0.78
Fat 0.48 0.87 0.86 0.72 0.82
Quake 0.71 0.84 0.87 0.72 0.82
Longley 0.94 0.93 0.99 0.92 0.90

TABLE 5. Average generated rules by the MOPAR, MOCANAR, ACO-R, MOB-ARM and apriori algorithms with respect to the ‘Basketball’, ‘Quake’, ‘Fat’ and

‘Longley’ datasets.

Datasets MOPAR [7] MOCANAR [10] ACO-R [8] MOB- Apriori [16]
ARM [9]

Basketball 11.2 32.8 40.4 8.4 4

Fat 10.4 54.6 13.8 7.8 237.40

Quake 18.6 22.2 47 8.4 16.2

Longley 16.2 8.8 8.4 20.6 136.8

Table 5 displays the average number of association rules
generated by each algorithm for each dataset. It is evident
from the table that MOCANAR and ACO-R mined the
highest number of rules across all datasets. Conversely,
MOPAR and MOB-ARM yielded the fewest rules across
all datasets, with the exception of the Longley dataset.
However, the Apriori algorithm produced numerous rules for
all datasets except for Basketball. Fig. 3 provides a visual
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representation of the average number of rules mined by the
algorithms.

Table 6 provides the average time taken by the algorithms,
Table 7 presents the average comprehensibility values of the
mined rules, and Table 8 displays the average interestingness
values of the mined rules. Additionally, Table 9 offers a
comparative analysis of all five algorithms across the four
datasets.
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FIGURE 2. Average confidence of the MOPAR, MOCANAR, ACO-R, MOB-ARM and Apriori algorithms with respect to the

‘Basketball’, ‘Quake’, ‘Fat’ and ‘Longley’ datasets.

TABLE 6. Average time (in seconds) spent by the MOPAR, MOCANAR, ACO-R, MOB-ARM and apriori algorithms with respect to the ‘Basketball’, ‘Quake’,

‘Fat’ and ‘Longley’ datasets.

Datasets MOPAR [7] MOCANAR [10]  ACO-R [8] MOB- Apriori [16]
ARM [9]

Basketball 455.4 404.9 442 1181.92 750.78

Fat 1259.28 1469.22 1173.26 3345.4 1891

Quake 361 424.04 402.16 1253.42 1463

Longley 500.28 545.08 604.52 1539.3 1614

TABLE 7. Average comprehensibility of the MOPAR, MOCANAR, ACO-R and MOB-ARM algorithms with respect to the ‘Basketball’, ‘Quake’, ‘Fat’ and

‘Longley’ datasets.
Datasets MOPAR [7] MOCANAR [10] ACO-R [8] MOB-
ARM [9]
Basketball 0.82 0.67 0.62 0.62
Fat 0.83 0.69 0.75 0.62
Quake 0.71 0.66 0.63 0.64
Longley 0.90 0.75 0.55 0.70

TABLE 8. Average interestingness of the MOPAR, MOCANAR, ACO-R and MOB-ARM algorithms with respect to the ‘Basketball’, ‘Quake’, ‘Fat’ and ‘Longley’

datasets.

Datasets MOPAR [7] MOCANAR [10] ACO-R [8] MOB-
ARM [9]

Basketball 043 0.24 0.25 0.24

Fat 0.15 0.21 0.54 0.27

Quake 0.16 0.24 0.24 0.22

Longley 0.84 0.65 0.56 0.59

Fig. 4 depicts the comparative runtime performance of

the algorithms. It is evident that MOPAR, MOCANAR,
and ACO-R exhibit similar runtime performance across all
datasets, while MOB-ARM and Apriori are consistently
slower. Fig. 5 showcases the average comprehensibility
values of the mined rules. MOPAR consistently yields
the highest comprehensibility measures for all datasets.
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On the other hand, MOCANAR, ACO-R, and MOB-ARM
exhibit similar average comprehensibility results across
all datasets. Fig. 6 illustrates the average interestingness
values of the mined rules. MOPAR yields the highest
interestingness values for the Basketball and Longley datasets
but the lowest values for the Quake and Fat datasets.
ACO-R obtains the highest interestingness measure for the
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TABLE 9. Comparative experimental results for the ‘Basketball’, ‘Quake’, ‘Fat’ and ‘Longley’ datasets.

Datasets Algorithms Time(sec) Avg. Avg. Avg. Avg. Avg. Int.
rules Supp. Conf. Comp.
MOPAR 455.4 1.2 0.13 0.78 0.82 0.43
MOCANAR 404.9 32.8 0.49 0.80 0.67 0.24
Basketball ACO-R 442 40.4 0.41 0.80 0.62 0.25
asketba MOB-ARM 1181.92 8.4 0.28 0.63 0.62 0.24
Apriori 750.78 4 0.16 0.78 NA NA
MOPAR 361 18.6 0.22 0.71 0.71 0.16
MOCANAR 424.04 222 0.51 0.84 0.66 0.24
Quik ACO-R 402.16 47 0.57 0.87 0.63 0.24
uake MOB-ARM 1253.42 8.4 0.45 0.72 0.64 0.22
Apriori 1463 16.2 0.24 0.82 NA NA
MOPAR 1259.28 104 0.08 0.48 0.83 0.15
MOCANAR 1469.22 54.6 0.63 0.87 0.69 0.21
Fat ACO-R 1173.26 13.8 0.01 0.86 0.75 0.54
MOB-ARM 3345.4 7.8 0.34 0.72 0.62 0.27
Apriori 1891 237.40  0.16 0.82 NA NA
MOPAR 500.28 16.2 0.10 0.94 0.90 0.84
MOCANAR 545.08 8.8 0.29 0.93 0.75 0.65
Lonel ACO-R 604.52 8.4 0.35 0.99 0.55 0.56
ongley MOB-ARM 1539.3 20.6 0.28 0.92 0.70 0.59
Apriori 1614 136.8 0.19 0.90 NA NA
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FIGURE 3. Average generated rules by the MOPAR, MOCANAR, ACO-R, MOB-ARM and Apriori algorithms with respect to
the ‘Basketball, ‘Quake’, ‘Fat’ and ‘Longley’ datasets.

TABLE 10. The average values of six measures across all datasets.

Algorithms Time(sec) Avg. rules Avg. Supp. Avg. Conf. Avg. Comp.  Avg. Int.
MOPAR 644 14 0.13 0.72 0.81 0.39
MOCANAR 710 29 0.48 0.86 0.69 0.33
ACO-R 655 27 0.33 0.88 0.64 0.40
MOB-ARM 1830 11 0.34 0.75 0.64 0.33
Apriori 1429 98.6 0.18 0.83 NA NA

Fat dataset. MOCANAR and MOB-ARM produce average were selected based on their record count, with Longley

interestingness results across all datasets. having the lowest number of records and Quake having the

Fig. 7 and Fig. 8 display the boxplots for confidence, highest number of records. For the Longley dataset, MOPAR
support, interestingness, and comprehensibility measures for demonstrates the best results in terms of comprehensibility
the Longley and Quake datasets, respectively. These datasets and interestingness measures, as evident from the boxplots.
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FIGURE 4. Average time (in seconds) spent by the MOPAR, MOCANAR, ACO-R, MOB-ARM and apriori algorithms with
respect to the ‘Basketball’, ‘Quake’, ‘Fat’ and ‘Longley’ datasets.

0.9

0.8

0.

~N

0.

[}

0.

v

0.

H

0.

w

Average Comprehensibility

0.

N

0.

=

Basketball Quake

0

B MOPAR = MOCANAR m ACO-R

Longley
Datasets

MOB-ARM

FIGURE 5. Average comprehensibility of the MOPAR, MOCANAR, ACO-R and MOB-ARM algorithms with respect to the

‘Basketball’ ‘Quake’, ‘Fat’ and ‘Longley’ datasets.

However, the algorithms perform similarly in terms of
confidence, with ACO-R yielding the best result.

It is worth noting that the algorithms do not perform well
in terms of support, as indicated by the boxplots. Although
ACO-R achieves a higher average support value compared to
other algorithms, overall support values are relatively low for
all algorithms.

In the case of the Quake dataset, when comparing the algo-
rithms for the interestingness measure, MOCANAR, ACO-R,
and MOB-ARM demonstrate similar values, as shown in
the boxplots. However, MOPAR yields significantly different
results for interestingness, achieving better performance in
terms of comprehensibility. ACO-R stands out by providing
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the best results in terms of confidence and support values,
as observed from the boxplots.

Table 10 provides the average results of the four SI-based
NARM algorithms and the Apriori algorithm across the four
datasets, considering six different evaluation measures. Upon
analyzing the table, it is evident that none of the algorithms
performed the best across all six measures.

MOPAR demonstrated superior performance in terms
of average time, average comprehensibility, and average
interestingness. On the other hand, ACO-R achieved the
best results in terms of average confidence and average
interestingness measures. MOCANAR exhibited the highest
average support value. The Apriori algorithm generated the
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most average rules, but there is a chance that some of them
may be redundant or not very interesting. Overall, each
algorithm has its strengths and weaknesses, and the choice
of the algorithm would depend on the specific requirements
and priorities of the task at hand.

VI. FUTURE DIRECTIONS
SI-based algorithms have indeed been employed in NARM
to enhance the performance of traditional data mining
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algorithms. However, there are certain challenges and issues
that need to be addressed in order to make SI-based
algorithms more effective.

One crucial factor to consider for a fair comparison
among different algorithms is the selection of appropriate
stopping criteria. Ravber et al. [49] have highlighted this
issue and concluded that using the maximum number of
generations as a stopping criterion can be detrimental and
is not recommended for ensuring a fair comparison of
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optimization algorithms. However, in this paper, we have
followed the original settings proposed for the algorithms,
which include using the maximum generation as the stopping
criterion. For future research directions, it is important
to give due consideration to the selection of stopping
criteria to ensure fair and meaningful comparisons among
different algorithms. Alternative stopping criteria that take
into account convergence behavior or other relevant factors
should be explored and employed to evaluate the performance
of SI-based algorithms effectively.

Next, scalability and premature convergence are critical
issues that need to be addressed in optimization algorithms,
including SI-based algorithms in NARM. These challenges
can hinder the practical applicability and effectiveness of
these algorithms, particularly when dealing with larger
datasets.

Scalability: As datasets grow in size, the computational and
memory requirements of optimization algorithms increase
exponentially. This scalability issue poses a challenge for
SI-based algorithms, as they may struggle to handle large
datasets efficiently. To address this, future research should
focus on developing scalable algorithms that can effectively
handle big data. This may involve techniques such as parallel
computing, distributed processing, or sampling methods to
reduce the computational burden and memory requirements.

Premature Convergence: Premature convergence occurs
when an algorithm converges to a sub-optimal solution pre-
maturely without exploring the full search space. This issue
can arise due to inappropriate parameter settings or when the
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search space is too small, limiting the algorithm’s exploration
capabilities. To mitigate premature convergence, researchers
should investigate techniques such as adaptive parameter
tuning, dynamic population sizing, or diversity maintenance
mechanisms. These approaches can help prevent premature
convergence by promoting exploration and preventing the
algorithm from getting trapped in local optima.

By addressing the scalability and premature convergence
challenges, SI-based algorithms in NARM can become
more applicable and effective for real-world applications,
especially in scenarios involving large datasets.

Further, parameter tuning is a crucial challenge in SI-based
algorithms and can significantly impact their performance.
Finding the optimal set of parameter values for an algorithm
can be time-consuming and requires domain expertise.
It often involves conducting multiple experiments and per-
forming a thorough analysis to determine the best parameter
configuration. Moreover, while Sl-based algorithms are
generally robust to noise and incomplete data, they can still
be sensitive to certain types of noise or outliers. Noise and
outliers can disrupt the optimization process and lead to
suboptimal or misleading results. Therefore, it is important
to develop strategies to handle noise and outliers effectively,
such as preprocessing techniques, outlier detection, or robust
optimization methods.

In the future, addressing these issues and challenges is
crucial for the future development and advancement of
SI-based algorithms in the field of NARM. By tackling
these challenges, researchers can enhance the effectiveness,
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efficiency, and applicability of SI-based algorithms, making
them more reliable and practical for solving real-world
problems.

VII. CONCLUSION

This paper presented a comprehensive analysis of five
algorithms, four of which are SI-based algorithms for NARM
and the fifth being the traditional Apriori algorithm. The
analysis is conducted using four real-world datasets and
evaluated based on six key parameters: time efficiency,
average support, average confidence, the average number
of rules generated, average comprehensibility, and average
interestingness. The experimental results unveiled interest-
ing findings, with the MOB-ARM algorithm showcasing
the highest average processing time across all datasets.
On the other hand, the MOPAR, MOCANAR, and ACO-R
algorithms exhibited superior performance compared to the
Apriori algorithm. The analysis of average comprehensibility
highlighted MOPAR’s consistent superiority over the other
algorithms across all datasets. Despite generating a lower
number of rules, MOPAR’s rules exhibited impressive
confidence and interestingness measures. However, for
datasets with a larger number of attributes or instances,
some parameter adjustments may be necessary. On the
other hand, the MOCANAR algorithm consistently generated
rules with reliable outcomes across all metrics and datasets.
Meanwhile, ACO-R produced high-quality rules overall, but
it demonstrated a relative underperformance in terms of
support for the Fat dataset. Hence, ACO-R might benefit
from parameter adjustments when dealing with datasets
featuring more attributes. As for MOB-ARM, it generated
a moderate number of rules with average results across all
datasets. However, it stood out as the slowest among the
algorithms analyzed. To enhance MOB-ARM’s performance,
one potential improvement could involve eliminating the
discretization step, which would lead to more rules and
reduced time complexity. This adjustment might significantly
enhance the algorithm’s efficiency while maintaining its rule-
generation capabilities. The Apriori algorithm undoubtedly
stands out by generating the highest number of average
rules. However, this abundance of rules warrants careful
consideration, as it may include redundant or less interesting
rules. While Apriori’s efficiency in rule generation cannot
be denied, the quality and relevance of these rules must be
thoroughly assessed to ensure their usefulness in NARM
tasks. Despite demonstrating good performance in terms of
average confidence, the Apriori algorithm underperformed
in terms of average support and average time. In contrast,
the four SI-based algorithms for NARM showcased superior
performance in various aspects. Based on this analysis,
the study concludes that no single SI-based algorithm is
universally optimal for efficient NARM. Instead, a more
effective approach involves employing a combination of
algorithms, each selected based on specific metrics and objec-
tives. By leveraging the strengths of multiple algorithms,
researchers can enhance the efficiency and effectiveness of
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NARM, making it better suited for tackling diverse data
mining challenges.
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