SoftwareX 29 (2025) 101974

journal homepage: www.elsevier.com/locate/softx

Contents lists available at ScienceDirect

SoftwareX

Original software publication

NiaAML: AutoML for classification and regression pipelines

Check for
updates

Iztok Fister Jr. >, Laurenz A. Farthofer ¢, Luka Pe¢nik ", Iztok Fister *, Andreas Holzinger

a Human-Centered Al Lab, Institute of Forest Engineering, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, Austria
b Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroska cesta 46, 2000 Maribor, Slovenia

¢ Institute of Interactive Systems and Data Science, Graz University of Technology, Austria
d Institute of Computer Graphics and Vision, Graz University of Technology, Austria

ARTICLE INFO ABSTRACT

Keywords:

AutoML

Classification
Nature-inspired algorithms
Optimization

In this paper we present NiaAML, an AutoML framework that we have developed for creating machine learning
pipelines and hyperparameter tuning. The composition of machine learning pipelines is presented as an
optimization problem that can be solved using various stochastic, population-based, nature-inspired algorithms.
Nature-inspired algorithms are powerful tools for solving real-world optimization problems, especially those
that are highly complex, nonlinear, and involve large search spaces where traditional algorithms may struggle.

They are applied widely in various fields, including robotics, operations research, and bioinformatics. This
paper provides a comprehensive overview of the software architecture, and describes the main tasks of NiaAML,
including the automatic composition of classification and regression pipelines. The overview is supported by
an practical illustrative example.

Code metadata

Current code version

Permanent link to code/repository used for this code version
Code Ocean compute capsule

Legal Code License

Code versioning system used

Software code languages, tools, and services used

Compilation requirements, operating environments & dependencies
If available, link to developer documentation/manual

Support email for questions

v2.1.0
https://github.com/ElsevierSoftwareX/SOFTX-D-24-00438
None

MIT Licence

Git

Python

Python >= v3.9

https://niaaml.readthedocs.io/en/latest/
iztok@iztok-jr-fister.eu

1. Motivation and significance

A machine learning pipeline is a structured sequence of steps or
stages that data undergo to move from raw input to a final machine
learning model that can make predictions or classifications. It auto-
mates the end-to-end workflow of machine learning, ensuring that the
process is systematic, efficient, and repeatable [1-3].

Designing robust machine learning pipelines is a challenging task,
especially for those who do not have in-depth expertise in this area,
because often extensive experience is required to overcome the com-
plexities involved.

Machine learning pipelines usually consist of several stages, in-
cluding data preprocessing techniques, the selection of classification

or regression methods, parameter tuning, and the whole modeling
process [4,5].

These steps are also very time-consuming, as they involve many
combinations of different parameter settings for each classification
or regression method. Furthermore, experiments with a variety of
architectures in deep learning networks require significant hardware
resources [6]. Evaluating the pipelines by making available numerous
metrics is another challenge for the application.

Automated Machine Learning (AutoML) [7] addresses all of these
challenges by simplifying critical steps in the machine learning process,
aiming to democratize machine learning for a wider audience. There

* Corresponding author at: Human-Centered Al Lab, Institute of Forest Engineering, Department of Forest and Soil Sciences, University of Natural Resources

and Life Sciences Vienna, Austria.

E-mail address: andreas.holzinger@human-centered.ai (Andreas Holzinger).

https://doi.org/10.1016/j.s0ftx.2024.101974

Received 15 August 2024; Received in revised form 6 November 2024; Accepted 8 November 2024

Available online 20 November 2024

2352-7110/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://github.com/ElsevierSoftwareX/SOFTX-D-24-00438
https://niaaml.readthedocs.io/en/latest/
mailto:andreas.holzinger@human-centered.ai
https://doi.org/10.1016/j.softx.2024.101974
https://doi.org/10.1016/j.softx.2024.101974
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2024.101974&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Iztok Fister Jr. et al.

SoftwareX 29 (2025) 101974

M [2 | 3 | x4 y Encoder y
01 (400|112 | 1 | =" > 0
CSV —>|NaN | 400 [-104] 2 | b e ’W‘ 1
Transformation i
03 | 410 |-102] 3 | b ‘Algorithm ALTELET 1
A
Pipeline N
DataReader Y v
x1 %3 x4 x1 X3 x4 preds‘
‘ JIELED ‘ 01 | 12| 1 00 | 04 | 01 = ‘ 0
— — —> 2
Feature 02 [-104| 2 05 | 05 | 0.2 2 ‘ 0
Selection
Algorithm 03 (102 £l 10 | 05 | 03 1
b P /
Component . Pipeline
L \ oo oo (G
Space —

Fig. 1. An overview of the software architecture of NiaAML.

are numerous AutoML approaches. In this paper, we focus on stochas-
tic, population-based nature-inspired algorithms for optimization [8].

Stochastic population-based nature-inspired algorithms are power-
ful tools for solving optimization problems across various domains.
Their popularity has increased steadily due to their wide applicability
in different problem areas and real-world scenarios.

The observation that nature-inspired optimization methods do not
rely on gradients is indeed significant, especially when comparing
them to popular deep learning approaches. Traditional deep learning
models, such as those using backpropagation, depend heavily on gra-
dient information to update the model’s parameters, which can limit
their applicability to problems where gradients are difficult or impos-
sible to compute, or where the objective function is non-differentiable,
highly irregular, or noisy. Stochastic weight update in backpropaga-
tion improves convergence probability and speed, while being simple
to implement across various network topologies, making it a viable
alternative to classical ordered updates without added complexity or
significant loss in convergence quality [9].

In contrast, nature-inspired algorithms like Genetic Algorithms, Par-
ticle Swarm Optimization, and Simulated Annealing, operate without
requiring gradient information, allowing them to explore complex, mul-
timodal search spaces more effectively. This makes them particularly
versatile, and applicable to a broader range of optimization problems,
including those where gradient-based methods may struggle or fail
entirely, thus offering a distinct advantage in certain scenarios [10,11].

AutoML can also be modeled as an optimization problem, where
the task of a stochastic algorithm is to compose the pipeline from
a set of data preprocessing methods and classifiers, as well as to
perform extensive parameter tuning of classifiers and feature selection
algorithms automatically.

The concept of using stochastic methods for optimizing the compo-
sition and the parameterization of machine learning pipelines jointly
was proposed in [12], while the initial software was introduced in the
subsequent papers [13,14]. Since the original NiaAML implementation
has undergone some refinements and extensions, in this paper we
outline the full potential of the NiaAML framework, highlighting its
advantages, presenting the latest architecture in detail, and providing
examples of how to use the framework. Additionally, we also discuss
future challenges for this framework.

2. Software description

NiaAML is a Python package designed for automated machine learn-
ing based on stochastic population-based nature-inspired optimization
algorithms. Its primary function is to discover optimal classification
or regression pipelines, comprising data selection, preprocessing, and
model components automatically (as illustrated in Fig. 1). Notably,
NiaAML optimizes both the selection of components and their hyper-
parameters for a given task. The quality of the pipeline is evaluated
using the fitness functions originally proposed in the paper by Pecnik
et al. [14]. A Graphical User Interface (GUI) has also been developed for
NiaAML, making it much easier for users, especially non-programmers,
to work with the framework.!

2.1. Software architecture

Developed for Python versions 3.9 and above, NiaAML leverages
nature-inspired optimization algorithms from the NiaPy framework [15].
The Application Programming Interface (API) was designed to be
compatible with the popular scikit-learn library [16], enabling code
reuse from that ecosystem. The package utilizes established data for-
mats, including numpy arrays [17] and pandas data frames [18].
To facilitate code extension and maintainability, NiaAML adheres to
object-oriented design principles, separating each component into a
class (detailed in the following subsections). The components are
parameterized explicitly using the set params method from scikit-
learn, avoiding re-initializations during optimization, and reducing the
memory footprint of the application [19].

The individual components are composed into a central Pipeline
class, which gives users access to many convenient methods including
inference (application of the pipeline on new samples), serialization
and logging.

NiaAML can be integrated seamlessly into Python scripts or Jupyter
Notebooks for exploratory data analysis and ad-hoc model develop-
ment. Additionally, a Command Line Interface (CLI) and a RESTful
web API (REST API)? are provided to foster reproducibility and model
lineage, making it easy to integrate with tools like DVC [20].

1 https://github.com/firefly-cpp/NiaAML-GUI
2 https://github.com/alenrajsp/NiaAML-API

https://github.com/firefly-cpp/NiaAML-GUI
https://github.com/alenrajsp/NiaAML-API

Iztok Fister Jr. et al.

2.2. Data loading and preprocessing

NiaAML operates on tabular input data and provides two implemen-
tations of the DataReader class: a CSVDataReader for loading CSV
files and a BasicDataReader for in-memory objects. Certain prepro-
cessing steps, such as data imputation and target encoding, are always
performed and are therefore excluded from the component selection
optimization.

2.3. Pipelines

A Pipeline represents a sequential composition of data processing
components and a model. In the background, NiaAML translates these
pipelines into optimization problems for NiaPy.

2.3.1. Feature selection

It is often beneficial to consider only a subset of features as input
for the model. How this subset is chosen is determined by the concrete
implementation of a FeatureSelectionAlgorithm component. The fol-
lowing algorithms are currently included: VarianceThreshold [16], Self-
Adaptive Differential Evolution (jJDEFSTH) [15], SelectPercentile [16],
Particle Swarm Optimization (PSO) [21], Bat Algorithm (BA) [22],
Differential Evolution (DE) [23], and SelectKBest [16]. Since NiaAML
is based on the NiaPy framework [15], users can utilize any of the
population-based nature-inspired algorithms that are already included
in NiaPy.?

2.3.2. Feature transformation

Transforming features, e.g. scaling, can be very beneficial for the
performance of the model. NiaAML’s FeatureTransformAlgorithm [15]
method provides several implementations of these methods as fol-
lows: Normalizer, StandardScaler, MaxAbsScaler, RobustScaler and
QuantileTransformer.

2.3.3. Classification and regression models

Because NiaAML was originally designed exclusively for classifica-
tion tasks, each model is still referred to as a Classifier . This was a
deliberate choice to avoid breaking changes when introducing regres-
sion models. All models follow the API from scikit-learn [19], which
allows re-using many implementations. The package currently includes:
random forest, multi-layer perceptron, linear SVC, AdaBoost, bagging,
extremely randomized trees, decision tree, decision tree regression, K-
Neighbors, Gaussian process, Gaussian process regression, Gaussian NB,
quadratic discriminant analysis, linear regression, ridge regression and
Lasso regression.

2.4. Optimization and inference

The main entry point for users is the PipelineOptimizer class,
which defines the components for the pipeline optimization (see Fig. 3).
This class handles the dual optimization of the component selection and
the parameterization of each component.

Once such a pipeline optimizer is defined, an optimization using
one of the provided fitness functions and optimization algorithms can
be triggered with the optimize method. The returned pipeline can be

serialized (saved and loaded) with export and load .
To use the pipeline for inference, new samples are passed to run .

3 For the full list of included algorithms check the following repository
link.4
4 https://github.com/NiaOrg/NiaPy/blob/master/Algorithms.md

SoftwareX 29 (2025) 101974
2.5. Time complexity of proposed framework

Stochastic optimization algorithms (like Evolutionary Algorithms
and Swarm Intelligence algorithms) incorporate randomness and prob-
ability in the variation operators (like crossover and mutation) to
efficiently find the optimum or near optimum solutions. Therefore,
these algorithms are compared with each other according to the char-
acteristics as follows:

- convergence speed,

» ability to avoid local optima,
» computational efficiency,

+ scalability.

On the other hand, the ML complexity depends on the number of
training examples necessary or sufficient to learn hypotheses of a given
accuracy. As a result, the ML complexity depends on:

» size or expressiveness of the hypothesis space,

+ accuracy to which target concept must be approximated,

« probability with which the learner must produce a successful
hypothesis,

» manner in which training examples are presented, e.g. randomly
or by query to an oracle.

In general, the time complexity of the proposed framework depends on
the problem to be solved.

3. Illustrative examples

The NiaAML framework now offers multiple ways for users to
interact with it. These include the NiaAML GUI and the NiaAML API,
which provide convenient options for users. Another method involves
using the well-documented command-line interface (CLI), as shown in
Fig. 2. However, the most flexible approach is to write short programs
using the NiaAML framework directly in Python.

An example of such a program is presented in Fig. 3, where we see a
basic script designed to find the optimal classification combination. In
the first part of the code, the NiaAML and numpy libraries are loaded.
The second part involves generating a random synthetic dataset for
testing purposes. In the third part, the problem is defined by passing
the data to the appropriate class, selecting the classifiers to test, and
choosing the feature selection and transformation algorithms. Finally,
we configure the remaining parameters, such as the metric for fitness
function calculation (in the current case, we use Accuracy), the control
parameters for the search algorithm (including population size and the
number of function evaluations), and the stochastic population-based
nature-inspired algorithm that will search for the best combination. In
this example, Particle Swarm Optimization is selected for both stages:
pipeline composition and hyperparameter tuning. Users are encouraged
to visit the following URL® for more detailed and well-documented
examples.

4. Impact

Democratizing machine learning for a broad audience is crucial
in today’s data-driven world. This aligns well with the principles of
human-centered Al, making these technologies accessible, understand-
able, and usable by a diverse range of people, not just experts in the
field. By democratizing machine learning, the goal is to empower more
individuals and organizations to leverage such technologies, ensuring
that the benefits of Al are widely distributed and that its development
is inclusive. This approach fosters transparency, collaboration, and
equity, which are key tenets of human-centered Al [24].

5 https://github.com/firefly-cpp/NiaAML/tree/master/examples

https://github.com/NiaOrg/NiaPy/blob/master/Algorithms.md
https://github.com/firefly-cpp/NiaAML/tree/master/examples

Iztok Fister Jr. et al.

SoftwareX 29 (2025) 101974

NiaAML on ¥ master [$?] is € v2.1.0 via @@ v3.11.2 (niaaml-py3.11) took 15s
) niaaml optimize .\tests\tests_files\dataset_header_classes.csv --number-of-pipeline-evaluations 2 --number-of-inner-ev

aluations 2
2024-11-05 10:13:54.908 | INFO
2024-11-05 10:13:54.913 | INFO

| niaaml.cli:optimize:42 -
| niaaml.cli:optimize:51 - § start the optimization process ...

reading “tests\tests_files\dataset_header_classes.csv’

INFO:niaaml:Currently optimizing 1: classifier - Multi Layer Perceptron, feature selection algorithm - Select K Best, fe

ature transform algorithm - Normalizer
INFO:niaaml:Evaluation 1
INFO:niaaml:Evaluation 2

INFO:niaaml:Currently optimizing 2: classifier - AdaBoost, feature selection algorithm - Variance Threshold, feature tra

nsform algorithm - Normalizer
INFO:niaaml:Evaluation 1
INFO:niaaml:Evaluation 2
2024-11-05 10:13:55.226 | SUCCESS

| niaaml.cli:optimize:65 - ™ saving optimized pipeline to “pipeline.ppln’

Fig. 2. An example of using the command line interface of NiaAML to optimize a classification pipeline.

from niaaml import PipelineOptimizer, Pipeline
from niaaml.data import BasicDataReader
import numpy

data_reader = BasicDataReader(
x=numpy . random. uniform(Low ;
y=numpy.random.choice(['Class 1',

'Class 2'], size=50)

pipeline_optimizer = PipelineOptimizer(
data=data_reader,
classifiers=['AdaBoost’
feature_selection_algorithm

s=['SelectKBest',

high=15.0, size=(56, 3)),

Bagging', 'MultiLayerPerceptron’
'SelectPercentile', 'ParticleSwarmOptimization', 'VarianceThreshold']

RandomForest', 'ExtremelyRandomizedTrees'],

feature_transform_algorithms=['Normalizer', 'StandardScaler']

)

pipeline = pipeline_optimizer.run('Accuracy', 15, 15, 300, 300

ParticleSwarmAlgorithm', 'ParticleSwarmAlgorithm')

Fig. 3. A classification pipeline definition and optimization.

As the data revolution pushes many individuals beyond funda-
mental data analysis to discover new insights across various fields,
modern AutoML solutions are essential. They speed up experimental
work and eliminate the need for a manual trial-and-error approach,
thus reducing the human effort required. NiaAML addresses both these
aspects, helping users manage machine learning pipelines efficiently
and accelerate the knowledge discovery process from datasets [25].

One of the strengths of NiaAML is its highly extensible architecture,
which makes it easy to add new components, whether for data prepro-
cessing or incorporating new classifiers. Additionally, being written in
Python and well-documented, NiaAML is ready for adoption by users
in academic and industrial settings where Python is widely used.

5. Conclusion and future outlook

In conclusion, this paper introduced the NiaAML AutoML frame-
work, developed for the automatic composition of machine learning
pipelines and hyperparameter tuning. By framing pipeline composi-
tion as an optimization challenge, the framework leverages stochas-
tic, population-based nature-inspired algorithms to find optimal so-
lutions. The software architecture was outlined meticulously, with
a focus on NiaAML'’s key functions of generating classification and
regression pipelines automatically. The framework’s capabilities were
demonstrated further through practical examples.

The potential for extending NiaAML to incorporate deep learning
techniques, neural architecture search (NAS), and support for explain-
able artificial intelligence (XAI) opens up several intriguing questions
to stimulate future research:

(1) How can nature-inspired algorithms be effectively combined
with deep learning techniques to optimize neural network training
beyond traditional gradient-based methods? Particularly, how can hy-
brid approaches, including a human-in-the-loop bringing in conceptual
understanding and domain knowledge [26], lead to faster conver-
gence, better generalization, and more robust training in complex,
high-dimensional spaces.

(3) How can the NiaAML framework be extended to support the
development of explainable Al models, and what nature-inspired tech-
niques are most effective in enhancing model interpretability while
maintaining high performance? This question seeks to explore the

intersection of nature-inspired algorithms and explainable AI, aiming
to develop models that not only perform well but also provide trans-
parent, interpretable decisions, which is critical in sensitive application
domains including medicine [27] and bioinformatics.

4. In what ways can NiaAML be adapted to optimize hyperparam-
eters and architectures of deep neural networks in real-time or under
dynamic conditions, such as changing data distributions or computa-
tional constraints? This research would investigate the potential for
dynamic optimization in deep learning, using nature-inspired algo-
rithms to adapt models on-the-fly to changing conditions, which could
be particularly valuable in real-time systems or environments with
non-stationary data.

5. How can nature-inspired approaches within the NiaAML frame-
work be utilized to enhance the robustness of deep learning models
against adversarial attacks, data noise, and other forms of uncertainty?
This question explores the potential for nature-inspired algorithms to
contribute to the development of more resilient models, potentially
offering new ways to mitigate the risks posed by adversarial examples
and other vulnerabilities.

CRediT authorship contribution statement

Iztok Fister Jr.: Writing — review & editing, Writing — original draft,
Validation, Software, Project administration, Methodology, Investiga-
tion, Conceptualization. Laurenz A. Farthofer: Writing — original draft,
Visualization, Validation, Software, Formal analysis, Data curation.
Luka Peénik: Writing — original draft, Visualization, Validation, Soft-
ware, Formal analysis. Iztok Fister: Writing — original draft, Validation,
Supervision, Formal analysis. Andreas Holzinger: Writing — review &
editing, Writing — original draft, Supervision, Resources, Investigation,
Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Iztok Fister Jr. et al.
Acknowledgments

This research was funded in part by the Austrian Science Fund
(FWF) https://doi.org/10.55776/P32554. For open access purposes,
the authors have applied a CC BY public copyright license to any
author accepted manuscript version arising from this submission. This
publication reflects only the authors’ view and the founder is not
responsible for any use that may be made of the information it contains.
The authors are very grateful to the international research community,
having already reported some bugs in the NiaAML software and to all
who made improvements to the framework (see all the contributors®).
Last but not least the authors are grateful for the valuable comments
of the three reviewers.

Data availability

We have shared the link to the repo in the paper.

References

[1] Drori I, et al. AlphaD3M: Machine learning pipeline synthesis. 2021, arXiv
preprint arXiv:2111.02508.

[2] Olson RS, Moore JH. TPOT: A tree-based pipeline optimization tool for automat-
ing machine learning. In: Workshop on automatic machine learning. PMLR; 2016,
p. 66-74.

[3] Kotthoff L, Thornton C, Hoos HH, Hutter F, Leyton-Brown K. Auto-WEKA 2.0:
Automatic model selection and hyperparameter optimization in WEKA. J Mach
Learn Res 2017;18(25):1-5.

[4] Jordan MI, Mitchell TM. Machine learning: Trends, perspectives, and prospects.
Science 2015;349(6245):255-60. http://dx.doi.org/10.1126/science.aaa8415.

[5] Russell SJ, Norvig P. Artificial intelligence: a modern approach. Pearson; 2016.

[6] Gharibi G, Walunj V, Alanazi R, Rella S, Lee Y. Automated management of deep
learning experiments. In: Proceedings of the 3rd international workshop on data
management for end-to-end machine learning. 2019, p. 1-4.

[7] Hutter F, Kotthoff L, Vanschoren J. Automated machine learning: methods,
systems, challenges. Cham: Springer Nature; 2019, http://dx.doi.org/10.1007/
978-3-030-05318-5.

[8] Fister Jr. I, Yang X-S, Fister I, Brest J, Fister D. A brief review of nature-inspired
algorithms for optimization. Elektrotehniski Vestnik 2013;80(3):116-22.

[9] Koscak J, Jaksa R, Sinc¢dk P. Stochastic weight update in the backpropagation
algorithm on feed-forward neural networks. In: The 2010 international joint
conference on neural networks. IJCNN, IEEE; 2010, p. 1-4. http://dx.doi.org/
10.1109/1JCNN.2010.5596870.

[10] Freitas AA. A survey of evolutionary algorithms for data mining and knowledge
discovery. In: Ghosh A, Tsutsui S, editors. Advances in evolutionary computing.
Springer; 2003, p. 819-45. http://dx.doi.org/10.1007/978-3-642-18965-4_33.

6 https://github.com/firefly-cpp/NiaAML/graphs/contributors

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

SoftwareX 29 (2025) 101974

Freitas AA. Evolutionary algorithms for data mining. In: Maimon O, Rokach L,
editors. Data mining and knowledge discovery handbook. New York: Springer;
2010, p. 435-67.

Fister I, Zorman M, Fister D, Fister 1. Continuous optimizers for automatic design
and evaluation of classification pipelines. In: Khosravy M, Gupta N, Patel N,
Senjyu T, editors. Frontier applications of nature inspired computation. springer
tracts in nature-inspired computing.. Singapore: Springer; 2020, p. 281-301.
http://dx.doi.org/10.1007/978-981-15-2133-1_13.

Pecnik L, Fister I. Niaaml: Automl framework based on stochastic population-
based nature-inspired algorithms. J. Open Source Softw. 2021;6(61):2949.
Pecnik L, Fister I, Fister I. NiaAML2: An improved automl using nature-inspired
algorithms. In: Advances in swarm intelligence: 12th international conference,
ICSI 2021, gingdao, China, July 17-21, 2021, proceedings, part II 12. Springer;
2021, p. 243-52.

Vrbanc¢i¢ G, Brezo¢nik L, Mlakar U, Fister D, Fister Jr I. NiaPy: Python
microframework for building nature-inspired algorithms. J. Open Source Softw.
2018;3(23). http://dx.doi.org/10.21105/j0ss.00613.

Pedregosa F, et al. Scikit-learn: Machine learning in Python. J Mach Learn Res
2011;12:2825-30.

Harris CR, et al. Array programming with NumPy. Nature 2020;585(7825):357—
62. http://dx.doi.org/10.1038/541586-020-2649-2.

pandas development team T. Pandas-dev/pandas: Pandas. 2020.

Buitinck L, et al. API design for machine learning software: experiences from the
scikit-learn project. In: ECML PKDD workshop: languages for data mining and
machine learning. 2013, p. 108-22.

Kuprieiev R, et al. DVC: Data Version Control - Git for Data & Models. 2024,
http://dx.doi.org/10.5281/ZENODO.13137317, URL https://zenodo.org/doi/10.
5281/zenodo.13137317.

Kennedy J, Eberhart R. Particle swarm optimization. In: Neural networks, 1995.
proceedings., IEEE international conference on. 4, IEEE; 1995, p. 1942-8.

Yang X-S. A New Metaheuristic Bat-Inspired Algorithm. In: Gonzilez JR,
Pelta DA, Cruz C, Terrazas G, Krasnogor N, editors. Nature inspired cooperative
strategies for optimization (NICSO 2010). Berlin, Heidelberg: Springer Berlin
Heidelberg; 2010, p. 65-74. http://dx.doi.org/10.1007/978-3-642-12538-6_6.
Storn R, Price K. Differential Evolution — A Simple and Efficient Heuristic for
Global Optimization over Continuous Spaces. J Global Optim 1997;11(4):341-59.
http://dx.doi.org/10.1023/A:1008202821328.

Shneiderman B. Human-centered artificial intelligence: Reliable, safe and trust-
worthy. Int. J. Hum.-Comput. Interact. 2020;36(6):495-504. http://dx.doi.org/
10.1080/10447318.2020.1741118.

Holzinger A, Zupan M. KNODWAT: A scientific framework application for testing
knowledge discovery methods for the biomedical domain. BMC Bioinformatics
2013;14(1):191. http://dx.doi.org/10.1186/1471-2105-14-191.

Hudec M, Minarikova E, Mesiar R, Saranti A, Holzinger A. Classification by
ordinal sums of conjunctive and disjunctive functions for explainable AI and
interpretable machine learning solutions. Knowl. Based Syst. 2021;220:106916.
http://dx.doi.org/10.1016/j.knosys.2021.106916.

Combi C, Amico B, Bellazzi R, Holzinger A, Moore JH, Zitnik M, Holmes JH.
A manifesto on explainability for artificial intelligence in medicine. Artif Intell
Med 2022;133(11):102423. http://dx.doi.org/10.1016/j.artmed.2022.102423.

https://doi.org/10.55776/P32554
http://arxiv.org/abs/2111.02508
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb2
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb2
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb2
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb2
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb2
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb3
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb3
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb3
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb3
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb3
http://dx.doi.org/10.1126/science.aaa8415
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb5
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb6
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb6
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb6
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb6
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb6
http://dx.doi.org/10.1007/978-3-030-05318-5
http://dx.doi.org/10.1007/978-3-030-05318-5
http://dx.doi.org/10.1007/978-3-030-05318-5
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb8
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb8
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb8
http://dx.doi.org/10.1109/IJCNN.2010.5596870
http://dx.doi.org/10.1109/IJCNN.2010.5596870
http://dx.doi.org/10.1109/IJCNN.2010.5596870
http://dx.doi.org/10.1007/978-3-642-18965-4_33
https://github.com/firefly-cpp/NiaAML/graphs/contributors
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb11
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb11
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb11
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb11
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb11
http://dx.doi.org/10.1007/978-981-15-2133-1_13
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb13
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb13
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb13
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb14
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb14
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb14
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb14
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb14
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb14
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb14
http://dx.doi.org/10.21105/joss.00613
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb16
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb16
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb16
http://dx.doi.org/10.1038/s41586-020-2649-2
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb18
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb19
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb19
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb19
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb19
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb19
http://dx.doi.org/10.5281/ZENODO.13137317
https://zenodo.org/doi/10.5281/zenodo.13137317
https://zenodo.org/doi/10.5281/zenodo.13137317
https://zenodo.org/doi/10.5281/zenodo.13137317
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb21
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb21
http://refhub.elsevier.com/S2352-7110(24)00344-3/sb21
http://dx.doi.org/10.1007/978-3-642-12538-6_6
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1080/10447318.2020.1741118
http://dx.doi.org/10.1080/10447318.2020.1741118
http://dx.doi.org/10.1080/10447318.2020.1741118
http://dx.doi.org/10.1186/1471-2105-14-191
http://dx.doi.org/10.1016/j.knosys.2021.106916
http://dx.doi.org/10.1016/j.artmed.2022.102423

	NiaAML: AutoML for classification and regression pipelines
	Motivation and significance
	Software description
	Software architecture
	Data loading and preprocessing
	Pipelines
	Feature selection
	Feature transformation
	Classification and regression models

	Optimization and inference
	Time complexity of proposed framework

	Illustrative examples
	Impact
	Conclusion and Future Outlook
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

