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In this paper we present NiaAML, an AutoML framework that we have developed for creating machine learning
pipelines and hyperparameter tuning. The composition of machine learning pipelines is presented as an
optimization problem that can be solved using various stochastic, population-based, nature-inspired algorithms.
Nature-inspired algorithms are powerful tools for solving real-world optimization problems, especially those
that are highly complex, nonlinear, and involve large search spaces where traditional algorithms may struggle.

They are applied widely in various fields, including robotics, operations research, and bioinformatics. This
paper provides a comprehensive overview of the software architecture, and describes the main tasks of NiaAML,
including the automatic composition of classification and regression pipelines. The overview is supported by
an practical illustrative example.
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1. Motivation and significance

A machine learning pipeline is a structured sequence of steps or
stages that data undergo to move from raw input to a final machine
learning model that can make predictions or classifications. It auto-
mates the end-to-end workflow of machine learning, ensuring that the
process is systematic, efficient, and repeatable [1-3].

Designing robust machine learning pipelines is a challenging task,
especially for those who do not have in-depth expertise in this area,
because often extensive experience is required to overcome the com-
plexities involved.

Machine learning pipelines usually consist of several stages, in-
cluding data preprocessing techniques, the selection of classification

or regression methods, parameter tuning, and the whole modeling
process [4,5].

These steps are also very time-consuming, as they involve many
combinations of different parameter settings for each classification
or regression method. Furthermore, experiments with a variety of
architectures in deep learning networks require significant hardware
resources [6]. Evaluating the pipelines by making available numerous
metrics is another challenge for the application.

Automated Machine Learning (AutoML) [7] addresses all of these
challenges by simplifying critical steps in the machine learning process,
aiming to democratize machine learning for a wider audience. There
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Fig. 1. An overview of the software architecture of NiaAML.

are numerous AutoML approaches. In this paper, we focus on stochas-
tic, population-based nature-inspired algorithms for optimization [8].

Stochastic population-based nature-inspired algorithms are power-
ful tools for solving optimization problems across various domains.
Their popularity has increased steadily due to their wide applicability
in different problem areas and real-world scenarios.

The observation that nature-inspired optimization methods do not
rely on gradients is indeed significant, especially when comparing
them to popular deep learning approaches. Traditional deep learning
models, such as those using backpropagation, depend heavily on gra-
dient information to update the model’s parameters, which can limit
their applicability to problems where gradients are difficult or impos-
sible to compute, or where the objective function is non-differentiable,
highly irregular, or noisy. Stochastic weight update in backpropaga-
tion improves convergence probability and speed, while being simple
to implement across various network topologies, making it a viable
alternative to classical ordered updates without added complexity or
significant loss in convergence quality [9].

In contrast, nature-inspired algorithms like Genetic Algorithms, Par-
ticle Swarm Optimization, and Simulated Annealing, operate without
requiring gradient information, allowing them to explore complex, mul-
timodal search spaces more effectively. This makes them particularly
versatile, and applicable to a broader range of optimization problems,
including those where gradient-based methods may struggle or fail
entirely, thus offering a distinct advantage in certain scenarios [10,11].

AutoML can also be modeled as an optimization problem, where
the task of a stochastic algorithm is to compose the pipeline from
a set of data preprocessing methods and classifiers, as well as to
perform extensive parameter tuning of classifiers and feature selection
algorithms automatically.

The concept of using stochastic methods for optimizing the compo-
sition and the parameterization of machine learning pipelines jointly
was proposed in [12], while the initial software was introduced in the
subsequent papers [13,14]. Since the original NiaAML implementation
has undergone some refinements and extensions, in this paper we
outline the full potential of the NiaAML framework, highlighting its
advantages, presenting the latest architecture in detail, and providing
examples of how to use the framework. Additionally, we also discuss
future challenges for this framework.

2. Software description

NiaAML is a Python package designed for automated machine learn-
ing based on stochastic population-based nature-inspired optimization
algorithms. Its primary function is to discover optimal classification
or regression pipelines, comprising data selection, preprocessing, and
model components automatically (as illustrated in Fig. 1). Notably,
NiaAML optimizes both the selection of components and their hyper-
parameters for a given task. The quality of the pipeline is evaluated
using the fitness functions originally proposed in the paper by Pecnik
et al. [14]. A Graphical User Interface (GUI) has also been developed for
NiaAML, making it much easier for users, especially non-programmers,
to work with the framework.!

2.1. Software architecture

Developed for Python versions 3.9 and above, NiaAML leverages
nature-inspired optimization algorithms from the NiaPy framework [15].
The Application Programming Interface (API) was designed to be
compatible with the popular scikit-learn library [16], enabling code
reuse from that ecosystem. The package utilizes established data for-
mats, including numpy arrays [17] and pandas data frames [18].
To facilitate code extension and maintainability, NiaAML adheres to
object-oriented design principles, separating each component into a
class (detailed in the following subsections). The components are
parameterized explicitly using the set params method from scikit-
learn, avoiding re-initializations during optimization, and reducing the
memory footprint of the application [19].

The individual components are composed into a central Pipeline
class, which gives users access to many convenient methods including
inference (application of the pipeline on new samples), serialization
and logging.

NiaAML can be integrated seamlessly into Python scripts or Jupyter
Notebooks for exploratory data analysis and ad-hoc model develop-
ment. Additionally, a Command Line Interface (CLI) and a RESTful
web API (REST API)? are provided to foster reproducibility and model
lineage, making it easy to integrate with tools like DVC [20].

1 https://github.com/firefly-cpp/NiaAML-GUI
2 https://github.com/alenrajsp/NiaAML-API
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2.2. Data loading and preprocessing

NiaAML operates on tabular input data and provides two implemen-
tations of the DataReader class: a CSVDataReader for loading CSV
files and a BasicDataReader for in-memory objects. Certain prepro-
cessing steps, such as data imputation and target encoding, are always
performed and are therefore excluded from the component selection
optimization.

2.3. Pipelines

A Pipeline represents a sequential composition of data processing
components and a model. In the background, NiaAML translates these
pipelines into optimization problems for NiaPy.

2.3.1. Feature selection

It is often beneficial to consider only a subset of features as input
for the model. How this subset is chosen is determined by the concrete
implementation of a FeatureSelectionAlgorithm component. The fol-
lowing algorithms are currently included: VarianceThreshold [16], Self-
Adaptive Differential Evolution (jJDEFSTH) [15], SelectPercentile [16],
Particle Swarm Optimization (PSO) [21], Bat Algorithm (BA) [22],
Differential Evolution (DE) [23], and SelectKBest [16]. Since NiaAML
is based on the NiaPy framework [15], users can utilize any of the
population-based nature-inspired algorithms that are already included
in NiaPy.?

2.3.2. Feature transformation

Transforming features, e.g. scaling, can be very beneficial for the
performance of the model. NiaAML’s FeatureTransformAlgorithm [15]
method provides several implementations of these methods as fol-
lows: Normalizer, StandardScaler, MaxAbsScaler, RobustScaler and
QuantileTransformer.

2.3.3. Classification and regression models

Because NiaAML was originally designed exclusively for classifica-
tion tasks, each model is still referred to as a Classifier . This was a
deliberate choice to avoid breaking changes when introducing regres-
sion models. All models follow the API from scikit-learn [19], which
allows re-using many implementations. The package currently includes:
random forest, multi-layer perceptron, linear SVC, AdaBoost, bagging,
extremely randomized trees, decision tree, decision tree regression, K-
Neighbors, Gaussian process, Gaussian process regression, Gaussian NB,
quadratic discriminant analysis, linear regression, ridge regression and
Lasso regression.

2.4. Optimization and inference

The main entry point for users is the PipelineOptimizer class,
which defines the components for the pipeline optimization (see Fig. 3).
This class handles the dual optimization of the component selection and
the parameterization of each component.

Once such a pipeline optimizer is defined, an optimization using
one of the provided fitness functions and optimization algorithms can
be triggered with the optimize method. The returned pipeline can be

serialized (saved and loaded) with export and load .
To use the pipeline for inference, new samples are passed to run .

3 For the full list of included algorithms check the following repository
link.4
4 https://github.com/NiaOrg/NiaPy/blob/master/Algorithms.md
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2.5. Time complexity of proposed framework

Stochastic optimization algorithms (like Evolutionary Algorithms
and Swarm Intelligence algorithms) incorporate randomness and prob-
ability in the variation operators (like crossover and mutation) to
efficiently find the optimum or near optimum solutions. Therefore,
these algorithms are compared with each other according to the char-
acteristics as follows:

- convergence speed,

» ability to avoid local optima,
» computational efficiency,

+ scalability.

On the other hand, the ML complexity depends on the number of
training examples necessary or sufficient to learn hypotheses of a given
accuracy. As a result, the ML complexity depends on:

» size or expressiveness of the hypothesis space,

+ accuracy to which target concept must be approximated,

« probability with which the learner must produce a successful
hypothesis,

» manner in which training examples are presented, e.g. randomly
or by query to an oracle.

In general, the time complexity of the proposed framework depends on
the problem to be solved.

3. Illustrative examples

The NiaAML framework now offers multiple ways for users to
interact with it. These include the NiaAML GUI and the NiaAML API,
which provide convenient options for users. Another method involves
using the well-documented command-line interface (CLI), as shown in
Fig. 2. However, the most flexible approach is to write short programs
using the NiaAML framework directly in Python.

An example of such a program is presented in Fig. 3, where we see a
basic script designed to find the optimal classification combination. In
the first part of the code, the NiaAML and numpy libraries are loaded.
The second part involves generating a random synthetic dataset for
testing purposes. In the third part, the problem is defined by passing
the data to the appropriate class, selecting the classifiers to test, and
choosing the feature selection and transformation algorithms. Finally,
we configure the remaining parameters, such as the metric for fitness
function calculation (in the current case, we use Accuracy), the control
parameters for the search algorithm (including population size and the
number of function evaluations), and the stochastic population-based
nature-inspired algorithm that will search for the best combination. In
this example, Particle Swarm Optimization is selected for both stages:
pipeline composition and hyperparameter tuning. Users are encouraged
to visit the following URL® for more detailed and well-documented
examples.

4. Impact

Democratizing machine learning for a broad audience is crucial
in today’s data-driven world. This aligns well with the principles of
human-centered Al, making these technologies accessible, understand-
able, and usable by a diverse range of people, not just experts in the
field. By democratizing machine learning, the goal is to empower more
individuals and organizations to leverage such technologies, ensuring
that the benefits of Al are widely distributed and that its development
is inclusive. This approach fosters transparency, collaboration, and
equity, which are key tenets of human-centered Al [24].

5 https://github.com/firefly-cpp/NiaAML/tree/master/examples
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NiaAML on ¥ master [$?] is € v2.1.0 via @@ v3.11.2 (niaaml-py3.11) took 15s
) niaaml optimize .\tests\tests_files\dataset_header_classes.csv --number-of-pipeline-evaluations 2 --number-of-inner-ev

aluations 2
2024-11-05 10:13:54.908 | INFO
2024-11-05 10:13:54.913 | INFO

| niaaml.cli:optimize:42 -
| niaaml.cli:optimize:51 - § start the optimization process ...

reading “tests\tests_files\dataset_header_classes.csv’

INFO:niaaml:Currently optimizing 1: classifier - Multi Layer Perceptron, feature selection algorithm - Select K Best, fe

ature transform algorithm - Normalizer
INFO:niaaml:Evaluation 1
INFO:niaaml:Evaluation 2

INFO:niaaml:Currently optimizing 2: classifier - AdaBoost, feature selection algorithm - Variance Threshold, feature tra

nsform algorithm - Normalizer
INFO:niaaml:Evaluation 1
INFO:niaaml:Evaluation 2
2024-11-05 10:13:55.226 | SUCCESS

| niaaml.cli:optimize:65 - ™ saving optimized pipeline to “pipeline.ppln’

Fig. 2. An example of using the command line interface of NiaAML to optimize a classification pipeline.

from niaaml import PipelineOptimizer, Pipeline
from niaaml.data import BasicDataReader
import numpy

data_reader = BasicDataReader(
x=numpy . random. uniform(Low ;
y=numpy.random.choice(['Class 1',

'Class 2'], size=50)

pipeline_optimizer = PipelineOptimizer(
data=data_reader,
classifiers=['AdaBoost’
feature_selection_algorithm

s=['SelectKBest',

high=15.0, size=(56, 3)),

Bagging', 'MultiLayerPerceptron’
'SelectPercentile', 'ParticleSwarmOptimization', 'VarianceThreshold']

RandomForest', 'ExtremelyRandomizedTrees'],

feature_transform_algorithms=['Normalizer', 'StandardScaler']

)

pipeline = pipeline_optimizer.run('Accuracy', 15, 15, 300, 300

ParticleSwarmAlgorithm', 'ParticleSwarmAlgorithm')

Fig. 3. A classification pipeline definition and optimization.

As the data revolution pushes many individuals beyond funda-
mental data analysis to discover new insights across various fields,
modern AutoML solutions are essential. They speed up experimental
work and eliminate the need for a manual trial-and-error approach,
thus reducing the human effort required. NiaAML addresses both these
aspects, helping users manage machine learning pipelines efficiently
and accelerate the knowledge discovery process from datasets [25].

One of the strengths of NiaAML is its highly extensible architecture,
which makes it easy to add new components, whether for data prepro-
cessing or incorporating new classifiers. Additionally, being written in
Python and well-documented, NiaAML is ready for adoption by users
in academic and industrial settings where Python is widely used.

5. Conclusion and future outlook

In conclusion, this paper introduced the NiaAML AutoML frame-
work, developed for the automatic composition of machine learning
pipelines and hyperparameter tuning. By framing pipeline composi-
tion as an optimization challenge, the framework leverages stochas-
tic, population-based nature-inspired algorithms to find optimal so-
lutions. The software architecture was outlined meticulously, with
a focus on NiaAML'’s key functions of generating classification and
regression pipelines automatically. The framework’s capabilities were
demonstrated further through practical examples.

The potential for extending NiaAML to incorporate deep learning
techniques, neural architecture search (NAS), and support for explain-
able artificial intelligence (XAI) opens up several intriguing questions
to stimulate future research:

(1) How can nature-inspired algorithms be effectively combined
with deep learning techniques to optimize neural network training
beyond traditional gradient-based methods? Particularly, how can hy-
brid approaches, including a human-in-the-loop bringing in conceptual
understanding and domain knowledge [26], lead to faster conver-
gence, better generalization, and more robust training in complex,
high-dimensional spaces.

(3) How can the NiaAML framework be extended to support the
development of explainable Al models, and what nature-inspired tech-
niques are most effective in enhancing model interpretability while
maintaining high performance? This question seeks to explore the

intersection of nature-inspired algorithms and explainable AI, aiming
to develop models that not only perform well but also provide trans-
parent, interpretable decisions, which is critical in sensitive application
domains including medicine [27] and bioinformatics.

4. In what ways can NiaAML be adapted to optimize hyperparam-
eters and architectures of deep neural networks in real-time or under
dynamic conditions, such as changing data distributions or computa-
tional constraints? This research would investigate the potential for
dynamic optimization in deep learning, using nature-inspired algo-
rithms to adapt models on-the-fly to changing conditions, which could
be particularly valuable in real-time systems or environments with
non-stationary data.

5. How can nature-inspired approaches within the NiaAML frame-
work be utilized to enhance the robustness of deep learning models
against adversarial attacks, data noise, and other forms of uncertainty?
This question explores the potential for nature-inspired algorithms to
contribute to the development of more resilient models, potentially
offering new ways to mitigate the risks posed by adversarial examples
and other vulnerabilities.
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