INES 2024 « 28th IEEE International Conference on Intelligent Engineering Systems ¢ July 17-19, 2024 « Gammarth, Tunisia

Association Rule Mining as Knowledge Infusion

into the Mechanics of

an eXtended Classifier

System

1*' Damijan Novak

Faculty of Electrical Engineering and Computer Science

University of Maribor
Maribor, Slovenia
damijan.novak @um.si

3" Iztok Fister
Faculty of Electrical Engineering and Computer Science
University of Maribor
Maribor, Slovenia
iztok fister @um.si

Abstract—This article uses two well-established research areas:
Numerical Association Rule Mining and the eXtended Classifier
Systems. With their synergy, an attempt is made to advance the
reuse of previously generated associated rules of a given dataset.
Additionally, the article investigates how integrating infused rules
into the XCS algorithm’s population impacts its adaptive capa-
bilities, and how well the learned knowledge transfers to testing
dataset (environment) scenarios. This article also explores the
novel approach of utilizing any user-selected dataset feature as a
prioritized action for the eXtended Classifier System algorithm
to adapt to. This adaptability is enabled by incorporating the
prioritized action into the reinforcement learning process guided
by an evaluation function. Such extended applicability should go
beyond traditional classification tasks.

Index Terms—adaptivity, Association Rule Mining, eXtended
Classifier System, rule re-usage, reinforcement learning

I. INTRODUCTION

Humanity creates vast amounts of data and stores it for
commercial, research, or government purposes [1]. The data
increases come on behalf of the constant rise of data sensors
present in everyday lives, the technological interconnections
of people across the internet (e.g., social networks, business
applications, metaverses, etc.), due to the need to help us
understand climate change better, due to high increase in
(private) space explorations, and due to numerous similar
cases. The artificial intelligence techniques that are tackling
this data (e.g., big data [2] or large language models [3]) are
in a new technological ‘“Renaissance” due to many research
breakthroughs. Its impact supports research ranging across a
number of domains (e.g., improving the well-being of people
through the help of medicine [4]).

This research was funded by the Slovenian Research Agency Research Core
Funding No. P2-0057.

979-8-3503-6759-1/24/$31.00 ©2024 IEEE

2"d Domen Verber
Faculty of Electrical Engineering and Computer Science
University of Maribor
Maribor, Slovenia
domen.verber @um.si

4™ ztok Fister Jr.
Faculty of Electrical Engineering and Computer Science
University of Maribor
Maribor, Slovenia
iztok fister] @um.si

However, considerations (or limitations) are always present
when processing large amounts of data is needed. Questions
arise, such as how many computational resources are needed
for processing, how soon they can be processed, or how
interpretable the results are. For example, deep neural net-
works (DNN), when operating at their peak value, can deliver
results on-par with the best-performing people in specific
domains (e.g., on a grand master level in the popular real-time
strategy game of StarCraft 2 [5]). But, they usually require vast
processing power, are hard to interpret (i.e., they can be seen
as a black-box system [6]), and require much data to train
(e.g., to minimize over-fitting [7]). Therefore, much research
was done to make them more adaptable and understand better
how their approximation properties work [8].

Nevertheless, DNNs are not the only possible solution to
the problem. Considerations for simultaneously researching
other Machine Learning (ML) methods are also highly relevant
[9]. Therefore, this work is positioned in the classical ML
algorithms domain (i.e., distinct from DNN). The intention
is to provide a complementary contribution with other ML
algorithms, facilitating the reuse of knowledge, making the
algorithms more adaptable to new data (e.g., in medicine,
there is a great need for that [10]), and potentially enhancing
their interpretability in the process. Specifically, the article
focuses on the ML domains of Learning Classifier Systems
(LCS) and Association Rule Mining (ARM). For precision, the
investigation includes the sub-domains of eXtended Classifier
Systems (XCS) and Numerical ARM (NARM).

The LCSs are ML algorithms that integrate Reinforcement
Learning (RL) with the evolution strategies. In other words,
these systems use a set of classifiers called rules, which
evolve through a combination of RL and (usually) a genetic
algorithm, adapting to the changing environment [11]. The

000203

D. Novak et al. « Association Rule Mining as Knowledge Infusion into the Mechanics of an eXtended Classifier System

research in the LCS domain spans several decades already. It
includes many essential techniques that deal with online (i.e.,
maintaining real-time responsiveness) adaptivity or offline
(i.e., over more extended periods) optimization in learning
scenarios (online are now considered as Michigan, and offline,
as Pittsburgh classifier systems) [12]. For an interested reader
who wants to delve deeper into the background of LCS
systems and their history, it is warmly recommended to check
the works of [13] and [14]. This work used the XCS group
of algorithms, known for being online adaptive and evolving
accurate, maximally generalized classifiers [15].

ARM is a data mining method aimed at discovering re-
lationships between objects in transaction databases [16].
ARM methods are efficient for providing new knowledge,
representing mathematical implications consisting of two parts
(i.e., an antecedent and a consequence) [17]. The problem was
initially defined by Agrawal et al. [18]. Since this definition,
many algorithms for mining association rules have been pro-
posed in past years. At first, these algorithms were based on
deterministic methods [19], while, nowadays, many algorithms
are founded on stochastic population-based methods [20]. In-
terestingly, classical ARM methods can work only on datasets
with discrete attributes. Still, modern methods are conceived
more universally, and, thus, they allow working with mixed
types of attributes in datasets (i.e., numerical and discrete).
These methods belong to a class of NARM [17], and are
based primarily on stochastic population-based nature-inspired
algorithms [21] that present efficient methods for exploring
huge search spaces.

Three aspects of data utilization were addressed when
integrating NARM and XCS (NARM-XCS). Firstly, the study
focuses on reusing ARM results, which can be computation-
ally expensive to produce. Secondly, it involves connecting
the knowledge embedded in the ARM data with executable
actions through RL mechanisms. Note that, in our work, any
feature (attribute) from the dataset can serve as a prioritized
action for which the XCS learns associations between the
environment input and the proper action output. Importantly,
this action doesn’t necessarily have to be a class attribute from
a classification dataset. The XCS algorithm adapts its rules
to learn and predict the optimal actions based on the chosen
feature, making it versatile and applicable to scenarios beyond
traditional classification tasks. Thirdly, emphasis is placed on
augmenting the adaptability of the NARM-XCS algorithm to
transition seamlessly and accommodate the new environmental
state when presented with new sensory input data. Notably,
this process eliminates the need for computationally expensive
retraining of the whole model, distinguishing it from certain
other algorithms.

The structure of the article is as follows. Related works
are presented in the second Section. In the third Section, the
NARM and XCS algorithms are described in more detail, and
their connection is provided in the form of an NARM-XCS
architecture. Section four presents an experimental evaluation
of the NARM-XCS architecture. The results and a short
discussion are given in Section five. The article ends with

future work directions in Section six.

II. RELATED WORKS

In the work of [22], the authors investigated the evolution
of ARM rules with LCS from streams of unlabeled examples.
Their primary goal was to extract the categorical and quan-
titative association rules in online mode, and to address the
concept drift (i.e., when the underlying patterns in data change
over time) in new, challenging real-world problems. This work
could be seen as an inspiration for our work, but with a few
key differences. The study’s authors focused on generating
the rules and analyzing these discovered (interesting, as they
put it) rules. In contrast, our study is focused on prioritized
actions, which influence the direction of the attribute space
the XCS algorithm should take (or adapt to). Also, in our
work, the XCS algorithm starts from the outset of previously
mined ARM rules, and uses them as an initial foundation of
knowledge. Therefore, the start of the algorithm processing is
different.

The adaptive mechanics are well-documented mechanisms
in the Evolutionary Computation domain (e.g., the self-
adapting algorithms which, by themselves, without external
help, control the transmission function between the parent and
the offspring population [23]). For instance, the authors in
[24] enhanced the XCS algorithm by introducing an adaptive
mapping mechanism that evolves solutions-focused actions
dynamically with the most significant reward returns. Our
work differs from this work in a way that utilizing any dataset
feature is a less general, but more robust approach, that can be
used to improve the performance of RL algorithms by focusing
on specific features.

III. ASSOCIATION RULE INFUSION IN EXTENDED
CLASSIFIER SYSTEM

The main components of the proposed architecture are
described in this Section. Specifically, the primary operational
mechanism of NARM and XCS, and how they connect. Then,
a graphical overview of the association rule infusion in XCS
architecture is presented. The limitations and future extensions
are also discussed, due to the many opportunities identified
during the development phase.

A. Numerical Association Rule mining

ARM aims to discover the relations between attributes
hidden in transaction databases. Initially, most algorithms for
mining association rules operate deterministically, focusing
on datasets consisting of discrete attributes only. With the
vast development in domains of Evolutionary Algorithms
[21] and Swarm Intelligence-based algorithms [25], universal
algorithms for mining mixed types of attributes (i.e., discrete
and numerical) have been developed. These algorithms are
known under the name NARM [26].

The NARM problem is defined formally as follows: Let us
suppose a set of features O = {Oy, ..., O,,} and a transaction
database Db are given, where the transaction database consists
of transaction T'r, while each transaction contains a subset of

000204

INES 2024 « 28th IEEE International Conference on Intelligent Engineering Systems ¢ July 17-19, 2024 « Gammarth, Tunisia

features T'r C O. Indeed, each feature O; for i =1,...,m is
represented as either a set of categorical attributes o§“‘“ =
{ai1,...,ain,}, Where a; ; for j =1,...,n,; denote discrete
values and n; is the number of attributes, or an interval of real
values O\™"™ € [Ib;, ub;], where Ib; > LB; and ub; < UB;
designate the lower and upper bounds of definite interval inside
the domain of feasible values for the feature (i.e., the interval
[LB;,UBj]). Thus, the relation must be satisfied as follows
0 < ub; — Ib; < A;, where A; denotes the maximum interval
size. By these definitions, an association rule is defined as an
implication [27]:

X =Y, (D

where X C O, Y C O, and X NY = (). The quality of the
association rules is typically evaluated using the following two
measures [27]:

supp(X = v) = "I, o)
and (XUY)
n
COTLf(X = Y) = W, (3)

where supp(X = Y) > S denotes the support and
conf(X = Y) > Cyupn the confidence of the association rule
X = Y. In Eq. (2), the variable [N represents the number
of transactions in the transaction database Db, and n(.) is the
number of repetitions of the particular rule X = Y within Db.
Furthermore, C,,;, denotes minimum confidence and S,,;,
minimum support, determining that only those association
rules with confidence and support higher than C,;, and S,
are considered, respectively.

Although many other quality measures have been defined
recently, the measures mentioned above are elementary enough
that their applications are the most widespread.

B. eXtended Classifier System

XCSs are rule-based evolutionary online learning systems
[28]. They are part of the larger LCS domain. They are also
a model-free system. That means the XCS doesn’t attempt
to comprehensively represent the relationships or dynamics
within the data (i.e., no detailed environment model is con-
structed). Instead, it focuses on learning associations between
inputs and outputs from the data [29]. Learned associations
(knowledge) are kept in a so-called population, which is a set
of classifiers.

A classifier is a relatively simple concept expressed as a
form of an algorithmic IF sentence, and consists of a condition
and an action. The classifier functions so that if the specified
condition is met, the action that the classifier is propagating
can be executed or used during the XCS main loop execution
run (e.g., when predictions about available actions that can be
executed in an environment are generated). A condition also
supports the concept of a ’don’t care’ (#) mechanism. This
allows classifiers to generalize over specific inputs by treating
parts of conditions as ’don’t care’. With this mechanism, the
classifier can match a broader range of input patterns (sensory
inputs), providing flexibility in learning. The classifier also

supports some additional parameters that define it further. The
main additional parameters are usually the prediction estimate
(if the classifier matches an environment input, this is the
payoff we can expect), prediction error (estimates of the errors
for the given prediction), experience (a counter of how many
times the classifier was belonging to the set of propagated
actions), and fitness (fitness tells how accurate the prediction
estimate is).

The XCS modus operandi can be summarized as follows.
It uses three sets (population, match set, and action set, all
comprising classifiers) and operates within a main execution
loop. The iterative behavior can be outlined in the following
short steps. First, the environment is observed, and the sensory
input is received. In our case, the environment sensory input
is one encoded line (or an attribute and its value when an
evaluation function is involved) of a training dataset line or
of a testing dataset—depending on the XCS that is running
in the training (active learning) or testing (i.e., inferencing
actions) phase. Second, the algorithm generates a match set by
selecting classifiers that match the current input. Third, using
this match set, XCS produces predictions for possible actions.
The fourth step involves the selection of an action based
on these predictions. Following the execution of the chosen
action, the algorithm receives feedback from the environment,
allowing it to adapt and evolve the classifiers in its population.
This adaptive cycle repeats iteratively, enabling XCS to learn
and refine its rules over time.

C. NARM-XCS Architecture

Fig. 1 presents the NARM-XCS architecture and how the
components are connected. There are four main steps involved
in the operation of the architecture. The first is the data
preparation and initialization, the second is the generation and
processing of NARM rules, the third is for selecting and using
an encoder on the rules and the dataset lines, and the fourth
step is infusing the encoded rules into the XCS algorithm.
The encoded rules are then evolved using the environment,
RL components, and the evaluation function, which guides
the search for the prioritized action.

A crucial aspect of the first two steps is that the dataset’s
attributes are used directly as actions by the XCS algorithm.
When the ARM rules are integrated into the XCS population,
the consequents of these rules become actions. The values of
the actions are also kept, although they are not adapted during
the main execution loop (i.e., reserved for future work). In the
third step, an encoder has to be used to encode the dataset lines
and rules into a format suitable for processing by the XCS. In
our experiment, a basic binary encoder was used, with more
sophisticated encoders being a definitive improvement option
to try. The binary encoder encodes numerical data into a set of
binary values by calculating the bin number for each attribute
value, converting the bin number to a binary string with the
appropriate number of bits, and adding each bit to an encoded
list. The encoder takes as input a dataset or the NARM rules,
a list of minimum and maximum values for each attribute
(calculated by parsing the dataset or the rules), the number

000205

D. Novak et al. « Association Rule Mining as Knowledge Infusion into the Mechanics of an eXtended Classifier System

Data preparation and initialization ﬁ

1. Splitting the main dataset into training and testing sets
2. Data preprocessing (identifying attributes,
setting attribute value ranges, etc.)

3. Initializing XCS, the environment component (e.g.,
connecting to the dataset), and the reinforcement learning
component
4. Selecting the most suitable action that the
XCS should adapt to.

zo—APN—r»——— =]

Numerical ARM

1. Parameter configuration of NARM
2. Rule mining from the training dataset
3. Rule processing and splitting (dividing rules
into multiple rules with only one consequent)

N
DZ—wwemOODT

Encoder

1. Selection of Encoder
(e.g., binary encoder or other suitable encoder)
2. Processing and splitting of rules
(dividing rules into multiple rules with only one consequent)
3. Encoding
(rules encoding and dataset lines encoding
to ensure that XC 8 receives the same encoded dataset
representation from the environment)

w
Gz-000Zm

Infuse a fixed percentage
of encoded rules into the

population

- eXtended Classifier System and supporting components

Population

eXtended Classifier System

Main
execution

leop
Evaluation
function

OZ——TPOP>

Sensory

N Action|
input

Reward

Learni ng
component

Environment Reinforcement
component

Fig. 1. Key components and core mechanisms of the NARM-XCS architec-
ture.

of bins, and an encoding attribute setting (only used when
encoding rules). It then encodes each attribute in the dataset
or the rule set by calculating the bin the attribute value falls
into and then converting the bin to a binary string with the
appropriate number of bits.

IV. EXPERIMENT

With this experiment, a preliminary investigation into an
infusion of the rules in the population of the XCS algorithm
was performed to test if the learning performance of the
XCS algorithm was improved. The study also aimed to assess
the outcomes of the training section, and how stable the
reward received was during the subsequent testing phase of
the experiment. The experiment was run on an interval of 0 to
100 percent of encoded rules used in the XCS population, with
a step of 10 percent. The training and testing runs were done
five times for each step percentage, and the reward average was
calculated. Only one pass of the dataset was allowed for each

run (i.e., each instance from the training and testing dataset
was used only once during the run). Each run’s reward was
calculated by dividing the cumulative reward gathered during
the run by the number of instances in the dataset.

So as not to interfere with the repeatability of the experiment
runs, the experiment was designed in such a way that the
NARM rule generation was done only once. Therefore, when
the rules were generated, the XCS population initializations
were completed with the same rules (i.e., 1,329 and 1,120
rules) for all the different experiment settings and all the
repeated runs. Therefore, the results and differences in re-
wards that were received only reflected the operation of
the XCS algorithm using the NARM rules in its population
initialization, and were not the result of possible randomness
when uARMSolver [30] was processing (i.e., the DE that the
uARMSolver was using can produce slightly different rules
each time, because of its non-fully deterministic behavior).
The XCS used in the experiment was implemented in its basic
form [31], so any additional enhancements wouldn’t influence
the experimental results. The settings of the NARM hyper-
parameters of uARMSolver and of the XCS hyperparameters
can be observed in Table I and Table II.

In this experiment, the number of bins in the binary encoder
was set to two, and the encoding attribute setting was used to
calculate the average value of the rule values. In the fourth
step, the XCS main execution loop iterated over the dataset
until the termination criteria were met (e.g., the end of the
dataset), adapting the rules to the new sensory input.

The reward was calculated by a basic evaluation function,
designed to provide a positive reward of 0.2 if the XCS
selected the action per the prioritized action, and a negative
reward of -0.1 if the XCS didn’t choose the proper action.
In a subsequent experiment, a positive reward of 1.0 was
added (i.e., enhancing the evaluation function) when the en-
coded XCS selected an action and its action value matched
the corresponding encoded attribute and its value from the
testing dataset. This subsequent experiment aimed to better
understand how NARM-XCS behavior changed, and how its
adaptation was affected. Important note: The XCS doesn’t
include mechanisms to change the values of actions during the
main execution loop, but it decides based on a random value
selection between the minimum and maximum possible value
of an attribute when initializing the population. Therefore, this
insight is likely valuable for (our) future studies.

Two classification datasets from the UCI ML repository
were used for this study. The first dataset is called Wine
[32], which holds 178 instances and has 13 features, and
the feature type is comprised of integer and real values. The
second dataset is Statlog (Shuttle) [33], which holds 58,000
instances, has eight features, and comprises integer values.
The data instances were split randomly into the training and
testing samples in the ratio of 80:20. Specifically, the Wine
dataset was divided into 142 training instances and 36 testing
instances, while Statlog (Shuttle) was divided into 46,400
training instances and 11,600 testing instances. The Wine
training instances resulted in the creation of 317 NARM rules,

000206

INES 2024 « 28th IEEE International Conference on Intelligent Engineering Systems ¢ July 17-19, 2024 « Gammarth, Tunisia

Parameters | Values
Algorithm | Differential Evolution
NP 100
nFes 1000
F 0.5
CR 0.9
TABLE T

UARMSOLVER HYPERPARAMETERS

Parameters Values
N (population size) 500
alfa 0.1
beta 0.01
gamma 0.71
delta 0.1
Oca 25
€0 10
Odel 20
v 5

X 0.5
N 0.01
Osub 20
P# (probability of using #) | 0.33
doGASubsumption true
doActionSetSubsumption true

TABLE II
XCS HYPERPARAMETERS

which, when processed, would only have one attribute as
a consequent, resulting in a total of 1,329 rules (the XCS
algorithm then used these rules). On the other hand, the
Statlog (Shuttle) training dataset instances produced 307 rules
altogether, and, in the processed form, the total count was
1,120 rules.

For the Wine dataset, a Class feature was used as a priori-
tized action for the XCS to consider in the evaluation function.
In contrast, a randomly selected feature (i.e., Attribute3) was
used for Statlog (Shuttle).

V. RESULTS AND DISCUSSION

The results provided in the graphs show the average reward
collected during the training and testing runs. Figures 2 and 3
present the results for both datasets with the basic evaluation
function. The results indicate that the training and testing
rewards rose steadily on the smaller Wine dataset, as more
encoded rules were infused into the population. At 100 percent
of the infused rules, the XCS reached the average reward of
0.186. The larger dataset of Statlog (Shuttle), on the other
hand, reached the convergence of the rewards (approx. 0.188)
for both training and testing of rewards much sooner (i.e.,
before the 40 percent mark). The results, therefore, confirm
that the more rules that are infused, the higher the gathered
reward is, and the faster convergence towards the top average
reward for the XCS algorithm (i.e., only one dataset pass
was used in the experiment, and the XCS didn’t reach the
top reward of 0.188 with lower percentages, indicating the
convergence was slower with a lower infusion of the rules
into the population). In Fig. 4, the training rewards for the
enhanced evaluation function showed small increases with a
higher percentage of infused rules, but the testing rewards did

Wine dataset (basic evaluation function)

100%; 0.18666
0.2

0.15

0.1 80%; 0.151

0.05 /\ A4

Rewards

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Infused percentage of encoded rules into the population

— Average training rewards Average testing rewards

Fig. 2. Rewards of training and testing datasets evaluated using the Wine
dataset with a basic evaluation function.

Statlog (Shuttle) dataset (basic evaluation function)
0%; 0.166 20%; 0.188 100%; 0.188

—

20%; 0.18604

e
N

=]
=
«

100%; 0.18756
0%; 0.15544

Rewards
(=]
'o (=]
@ [

=}

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Infused percentage of encoded rules into the population

— Average training rewards —— Average testing rewards

Fig. 3. Rewards of training and testing datasets evaluated using the Statlog
(Shuttle) dataset with a basic evaluation function.

not follow this trend. In Fig. 5, the training reward for the
enhanced evaluation function remained static at zero, while the
testing rewards showed clearly (chaotic) negative trends. The
results aligned with our anticipated behavior because the XCS
doesn’t have the mechanisms to adapt the values of actions at
this point.

VI. CONCLUSION AND FUTURE WORK

The following contributions were achieved with this work:

o Bridging the gap between previously generated ARM
rules and the proper action-taking of XCS in the envi-
ronment (e.g., priming for rare events).

o Fast adaptation of the rules with new sensory input data
(i.e., can be used to adapt to the specific sub-domains).

o The first steps taken with our work were not only to
choose a proper action, but also, in the future, the proper

Wine dataset (enhanced evaluation function)
100%; 0.076

0.05
0 70%; -0.0132
0.05 0%, 10% 20% 0% 2 % 60% 70% 80% 90% 100%

—_——

Rewards

Infused percentage of encoded rules into the population

——Average training rewards Average testing rewards

Fig. 4. Rewards of training and testing datasets evaluated using the Wine
dataset with an enhanced evaluation function.

000207

D. Novak et al. « Association Rule Mining as Knowledge Infusion into the Mechanics of an eXtended Classifier System

Statlog (Shuttle) dataset (enhanced
evaluation function)
10

0% 10% 20% 30% 40%, 509 60% 9% 80% 90% 100%

-10

Rewards

20
-30
Infused percentage of encoded rules into the population

— Average training rewards Average testing rewards

Fig. 5. Rewards of training and testing datasets evaluated using the Statlog
(Shuttle) dataset with an enhanced evaluation function.

value for that action (e.g., connecting small subsets of
data (rules) to exceptional behavior (actions) [34]).

In future work, we would like to address the possibility
of missing attribute input values in a dataset, incorporating
advanced mechanisms for adapting the action values during
the main execution loop of the XCS algorithm, filtering the
rules based on their fitness thresholds (i.e., keeping only the
rules that are above the specified threshold quality), an in-
depth analysis of all the components (including an ablation
study and a time analysis), the usage of more sophisticated
encoders (e.g., K-means encoder), to touch on the subject of
the explainable nature of the rules of XCS, and improved
evaluation functions. The main idea is first to bring the ARM-
XCS architecture to peak performance, and then transition to
the problem-specific operations (e.g., advancing state-of-the-
art game agents operating in online mode with lots of data
to process) in complex environments (e.g., environments with
partial or incomplete (data) observability).

REFERENCES

[1] M. N. L. Sarker, M. Wu, and M. A. Hossin, “Smart governance through
bigdata: Digital transformation of public agencies,” In 2018 international
conference on artificial intelligence and big data (ICAIBD), IEEE, pp.
62-70, May 2018.

[2] Y. Duan, J. S. Edwards, and Y. K. Dwivedi, “Artificial intelligence
for decision making in the era of Big Data—evolution, challenges and
research agenda,” International journal of information management, vol.
48, pp. 63-71, 2019.

[3] A.J. Thirunavukarasu, D. S. J. Ting, K. Elangovan, L. Gutierrez, T. F.
Tan, and D. S. W. Ting, “Large language models in medicine,” Nature
medicine, vol. 29(8), pp. 1930-1940, 2023.

[4] T. Hulsen, S. S. Jamuar, A. R. Moody, J. H. Karnes, O. Varga, S.
Hedensted, and E. F. McKinney, “From big data to precision medicine,”
Frontiers in medicine, vol. 6(34), 2019.

[S] O. Vinyals, 1. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, et al., “Grandmaster level in StarCraft II using multi-agent
reinforcement learning,” Nature, vol. 575(7782), pp. 350-354, 2019.

[6] I. H. Sarker, “Deep learning: a comprehensive overview on techniques,
taxonomy, applications and research directions,” SN Computer Science,
vol. 2(6):420, pp. 1-20, 2021.

[7] M. Kim, J. Yun, Y. Cho, K. Shin, R. Jang, H. J. Bae, and N. Kim, “Deep
learning in medical imaging,” Neurospine, vol. 16(4):657, pp. 657-668,
2019.

[8] Z.Cai,J. Chen, and M. Liu, “Self-adaptive deep neural network: Numer-
ical approximation to functions and PDEs,” Journal of Computational
Physics, vol. 455: 111021, 2022.

[9] N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso, “The
computational limits of deep learning,” arXiv preprint arXiv:2007.05558,
2020.

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

000208

A. M. Chekroud, M. Hawrilenko, H. Loho, J. Bondar, R. Gueorguieva,
A. Hasan, et al., “Illusory generalizability of clinical prediction models,”
Science, vol. 383, pp. 164-167, 2024.

M. R. Karlsen, and S. Moschoyiannis, “Evolution of control with
learning classifier systems,” Applied network science, vol. 3, pp. 1-36,
2018.

P. L. Lanzi, “Learning classifier systems: then and now,” Evolutionary
Intelligence, vol. 1, pp. 63-82, 2008.

L. Bull, “A brief history of learning classifier systems: from CS-1 to XCS
and its variants,” Evolutionary Intelligence, vol. 9, pp. 55-70, 2015.

R. J. Urbanowicz, and J. H. Moore, “Learning classifier systems:
a complete introduction, review, and roadmap,” Journal of Artificial
Evolution and Applications, 2009.

M. V. Butz, T. Kovacs, P. L. Lanzi, and S. W. Wilson, “Toward a
theory of generalization and learning in XCS,” IEEE transactions on
evolutionary computation, vol. 8(1), pp. 28-46, 2004.

X. Wu, V. Kumar, Q. J Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda,
G. J McLachlan, A. Ng, B. Liu, P. S. Yu, “Top 10 algorithms in data
mining,” Knowledge and information systems, vol. 14(1), pp. 1-37, 2008.
I. J Fister and I. Fister, “A brief overview of swarm intelligence-
based algorithms for numerical association rule mining,” arXiv preprint
arXiv:2010.15524, 2020.

R. Agrawal, T. Imielifiski and A. Swami, “Mining Association Rules
between Sets of Items in Large Databases,” In 1993 ACM SIGMOD
International Conference on Management of Data, ACM, pp. 207-216,
1993.

C. Borgelt, “An Implementation of the FP-Growth Algorithm,” In Ist
International Workshop on Open Source Data Mining: Frequent Pattern
Mining Implementations, ACM, pp. 1-5, 2005.

1. J Fister, A. Iglesias, A. Galvez, J. Del Ser, E. Osaba and I. Fister,
“Differential Evolution for Association Rule Mining Using Categorical
and Numerical Attributes,” In Intelligent Data Engineering and Auto-
mated Learning — IDEAL 2018, Springer International Publishing, pp.
79-88, 2018.

A. E. Eiben Agoston E and J. E. Smith, “Introduction to evolutionary
computing,” Springer-Verlag Berlin, 2015.

A. Orriols-Puig, and J. Casillas, “Evolution of interesting association
rules online with learning classifier systems,” In International Workshop
on Learning Classifier Systems, Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 21-37, 2008.

S. Meyer-Nieberg, and H.-G. Beyer, “Self-adaptation in evolutionary
algorithms,” In Parameter Setting in Evolutionary Algorithms, vol. 54
(of Studies in Computational Intelligence), Heidelberg: Springer Berlin
Heidelberg, pp. 19-46, 2007.

M. Nakata, P. L. Lanzi, and K. Takadama, “XCS with adaptive action
mapping,” In Asia-Pacific Conference on Simulated Evolution and
Learning, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 138-147,
2012.

C. Blum and D. Merkle, “Swarm Intelligence: Introduction and Appli-
cations,” Springer-Verlag Berlin, 2008.

I. Fister, A. Iglesias, A. Galvez and I. J Fister, “Online numerical
association rule miner,” Neurocomputing, Elsevier, vol. 523, pp. 33-43,
2023.

R. Agrawal, and R. Srikant, “Fast algorithms for mining association
rules,” In 20th int. conf. very large data bases, VLDB, Morgan Kaufmann
Publishers Inc., vol. 1215, pp. 487-499, 1994.

N. Fredivianus, H. Prothmann, and H. Schmeck, “XCS revisited: a novel
discovery component for the eXtended classifier system,” In Asia-Pacific
Conference on Simulated Evolution and Learning, Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 289-298, 2010.

R. J. Urbanowicz, and W. N. Browne, “Introduction to learning classifier
systems,” Springer, 2017.

1. Fister and I. Fister Jr. “uarmsolver: A framework for association rule
mining,” arXiv preprint arXiv:2010.10884 (2020).

M. V. Butz, and S. W. Wilson, “An algorithmic description of XCS,”
Soft Computing, vol. 6, pp. 144-153, 2002.

S. Aeberhard, and M. Forina, Wine, UCI Machine Learning Repository,
1991, https://doi.org/10.24432/C5PC7].
Statlog (Shuttle), UCI Machine
https://doi.org/10.24432/C5WS31.

S. Ventura, and J.M. Luna, “Mining Exceptional Relationships Between
Patterns,” In: Pattern Mining with Evolutionary Algorithms, Springer,
Cham, 2016.

Learning Repository,

