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Abstract—Neural networks have become a leading model in
modern machine learning, able to model even the most complex
data. For them to be properly trained, however, a lot of com-
putational resources are required. With the carbon footprint of
ever-growing adoption of neural networks in mind, an approach
to reduce the required training resources would be very welcome.
We designed a new training effort reduction method based on
the calculation of area under the normalized loss curve and
assessed it on the electricity consumption forecasting problem
with the recurrent neural networks. The results show that the
proposed method was able to considerably reduce the amount
of computational resources, while maintaining the predictive
performance, and thus contributing towards the Green Al

Index Terms—machine learning, neural networks, hyper-
parameter optimization, resource optimization, Green Al

I. INTRODUCTION

To meet the challenges of successfully discovering knowl-
edge and intelligently analyzing the ever-increasing amount
of data available, researchers have developed increasingly
complex Machine Learning (ML) approaches, algorithms and
models. Such approaches attempt to relieve data scientists
of the increasingly demanding tasks of preprocessing and
transforming data. A typical example are Neural Networks
(NNs) and Deep Learning (DL) methods, which, through
representation learning, largely relieve experts of the time-
consuming feature engineering and mapping of data spaces [1].
The trade-off for this type of automation is an immense
increase in the complexity of the training process and the
computational complexity of such algorithms, which require
huge amounts of computing resources to run successfully [2].

Training deep NNs is extremely demanding in terms of
resource consumption. With the ever-growing adoption of
Artificial Intelligence (AI), its carbon footprint is no longer
negligible [3], as Al could soon consume as much energy as
a country the size of the Netherlands [4]. So, the question is
how to reduce the need for computing resources when training
complex ML predictive models without significantly reducing
the performance of the trained models.

NNs are trained using non-deterministic, gradient-based it-
erative algorithms, involving randomized weight initialization,
data ordering, and data augmentations [5]. With a large number
of iterations, they gradually improve the fit of the trained
model with the given training data, thereby reducing the
model’s error rate. The search space for possible solutions
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is extremely large and complex, with a large number of
local optima [6]. The goal of training is to approach the
global optimum, but iterative searches often end up in local
optima that do not allow adequate global progress [7]. To
avoid stagnation in local optima, the training is performed in
several independent runs; before each run, we can change or
adjust the parameters that affect the execution of the training
algorithm. Because of the stochasticity of the training algo-
rithms, each independent run of training produces a different
network with better or worse performance than average [5].
The consumption of computational resources is directly related
to the number of training iterations performed. Since we
do not necessarily train a better predictive model with each
successive run, the total number of training iterations, and
thus the need for computational resources, could be reduced
by prematurely terminating unpromising runs that are highly
unlikely to improve the predictive model. However, care must
be taken not to prevent runs that would otherwise lead to an
optimal model by stopping training excessively.

In this paper, we present a possible new method for reducing
the training effort of NNs by dynamically stopping individual
training runs. We present and explain the metric, with the help
of which we can assess whether it makes sense to continue
with the training process. We tested the new method on the
problem of predicting electricity consumption using Recurrent
Neural Networks (RNNs).

The main contributions of this paper can be summarized as:

o a brief overview of existing resources optimization ap-
proaches in neural networks training,

« a proposed training effort reduction method based on the
calculation of area under the normalized loss curve,

o a designed experiment to evaluate the suitability of the
proposed training effort reduction method.

The next section of the paper briefly overviews related work
on NNs training effort reduction approaches. In Section III,
we present all the crucial components that constitute the
proposed training effort reduction method, which is explained
in detail in Section IV. The proposed method is evaluated
on a set of prepared electricity consumption time series data
in an experiment, presented in Section V, together with the
evaluation of the obtained results. The last section concludes
the paper with a summary of our findings.
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II. BACKGROUND: THE COMPUTATIONAL COMPLEXITY OF
NN TRAINING AND WAYS TO OPTIMIZE THE RESOURCES

Several methods have been proposed to reduce the computa-
tional cost of training NNs and thus reduce the environmental
impact. In [8] authors designed a ReLU-based multilayer
NN that maps feature vectors to a higher dimensional space,
reducing training costs as the number of layers increases.
Another approach is to reduce the computational complexity
of deep NNs by optimising and adapting them for resource-
constrained platforms [9]. Implicit regularization techniques,
such as using more aggressive learning rates and optimizing
hyper-parameters, can also lead to faster convergence rates
and computational savings [10]. Furthermore, dynamic data
reduction techniques can be used to reduce the amount of
work required during training, thereby reducing costs and
environmental impact [11].

Frequently, various Hyper-parameter Optimization (HPO)
approaches are used in training NNs, which can improve the
predictive performance of NNs to be competitive with human
experts, but at the expense of increased computational costs.
A prevalent approach to speed up the training process with
HPO is early training termination using some kind of stop-
ping criteria [12]. It is not only a well-known regularization
technique, but also provides an excellent mechanism to avoid
wasting resources when training is not going in the right
direction. For example, in [13] the authors mimicked the early
termination of bad runs with the help of a probabilistic model
that extrapolates performance from the first part of a learning
curve to its remainder, enabling them to automatically identify
and terminate bad runs to save time.

III. MATERIALS AND METHODS

A. Hyper-parameter Optimization in Machine Learning

In general, complex algorithms wuse various hyper-
parameters, which determine their behavior and thus contribute
to their result. HPO is the process of finding optimal values
of hyper-parameters [14], such that will provide the most
desirable result. It is used for various purposes where optimal
values of the parameters are not known in advance or cannot
be simply determined analytically. In ML, we use HPO to
determine the values of hyper-parameters, which significantly
contribute to the predictive performance of the trained pre-
dictive model. Thus, the set of possible values of hyper-
parameters represents the search space, within which, using
the search algorithm or optimization method, we are looking
for such a combination of value settings (hyper-parameter
configuration), which will enable the selected ML algorithm
to build the best possible prediction model according to the
given evaluation function [15]. The search for optimal values is
usually iterative, where the setting of hyper-parameter values is
being constantly changed and improved throughout iterations.
The values can be either continuous, discrete, binary, or
categorical and have different constraints, so their optimization
is often a complex constrained optimization problem [16].

In general, for a HPO problem, the aim is to obtain:
z" = arg min f(x), (1)

where f(x) is the objective function to be minimized, such
as the root mean squared error, z* is the hyper-parameter
configuration that produces the optimum value of f(z), and a
hyper-parameter = can take any value in the search space X.

In supervised ML, such as regression, the goal is to obtain
an optimal predictive model function to minimize the cost
function that models the error between the predicted output
and original data [15]. If the mapping between input values and
outputs in the predictive model is denoted as a model function
f from a set of possible models F', the optimal predictive
model can be obtained by [17]:

f = arg icnel;,l Eﬁ(f(xz)vyzL (2)

where n is the number of training instances, x; is the feature
vector of the i-th instance, y; is the corresponding actual
output, and L is the cost function value of each sample.

There are different approaches to solve HPO tasks in ML,
the most common being various grid and random search
approaches [18]. Various advanced metaheuristic algorithms
have shown some very good results when optimizing hyper-
parameters in deep neural networks recently [14].

B. Random Search

Random Search (RS) and its variations are one of the most
common metaheuristics algorithms for optimizing complex
stochastic systems whose expected performance under any
particular system design is unavailable in close form and must
be instead simulated [19]. Thus, if 6 represents the set of all
possible system designs and f(z) = €[Y (z, )] refers to the
expected system performance under each design x € 6, then
the goal is to solve the optimization problem:

mingeq f(x) 3)

In contrast to the deterministic methods such as interval
analysis and tunneling methods, which topically guarantee
asymptotic convergence to the optimum, RS algorithm and
its variants ensure convergence in probability. The trade-
off between the approaches is in terms of computational
complexity [20]. In various studies [21] the RS methods have
shown the ability to solve large-scale problems efficiently in a
way that is not possible for deterministic algorithms. Whereas
it is known that a deterministic method for global optimization
is NP-hard [22], the studies show that a stochastic algorithm
can be executed in polynomial time [20].

C. RNNs for time series forecasting

There are many methods, techniques and approaches for
dealing with electricity consumption forecasting. They can be
categorized into three groups: statistical analysis, traditional
ML, and deep learning. The DL algorithms, devised to auto-
matically learn complex and highly nonlinear feature repre-
sentations from time series data, generally outperform the rest
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Fig. 1: An example of electricity consumption forecasting using a Recurrent Neural Network trained with the proposed method.

in predictive performance. A prevalent DL model architecture,
known as the Recurrent Neural Network (RNN), is typically
employed to tackle the challenge of such predictions, by utiliz-
ing recurrent units. The basic purpose of the recurrent unit is to
compute the output based on the current input and the previous
hidden state. The hidden state at some time step ¢ is calculated
using the current input z; and the previous hidden state h;_1,
typically represented as hy = o (Wyhi—1 + Woaxs + 1), where
o is the activation function, W}, and W, are weight matrices,
and b is the bias vector [23]. RNNs have demonstrated
their efficacy in addressing various problems in time series
forecasting (an example is presented in Fig. 1). However, a
common issue arises due to the substantial increase in the
number of inputs in RNNs, leading to a more complex weight
adjustment process. This often results in the vanishing gradient
problem [24], a significant obstacle in the optimization of
DL models. The issue of capturing long-term dependencies
in the data and alleviating the vanishing gradient problem was
addressed with LSTM units, which introduced memory cells
and gating mechanisms to control the flow of information.
LSTM incorporates three different gates (input, forget, and
output) to regulate information flow and prevent the vanishing
gradient problem. The input gate decides which information to
update, the forget gate decides which information to discard,
and the output gate decides which information to output [23].
Because of their complex internal mechanism, however, the
LSTMs tend to be computationally very expensive.

D. Electricity consumption dataset

The data for the electricity consumption dataset was col-
lected from 15 distinct households in Slovenia. These real-
world measurements represent household power consumption,
captured at 15-minute intervals and then aggregated into
daily consumption. Each interval corresponds to the power
consumed in kilowatts per hour (kWh). The duration of power
consumption measurement varies between 1.080 and 1.827
days, depending on the specific household. Some measure-
ments (not more than 5% overall) might be missing.

E. Preparation of training data

For the experiment, presented in this paper, we used a
univariate time series (electricity consumption measurements
only) without external data. First, the missing values were
replaced using the linear interpolation imputation method.
The captured 15-minute interval measurements were then
aggregated into a daily consumption.

The first 720 values (i.e. 720 days of data or approximately
2 years) were used to train the model with a sliding window
size of 30 days (one month) with a step size of 1. An instance
for the ML algorithm is thus composed of the 30 successive
daily consumption values as input, while the following value
in the time series is used as output. For the testing purposes,
predictions for all the remaining values were made using the
trained model to determine the accuracy of the predictions.

F. Evaluation of trained forecasting models

We used Mean Absolute Error (MAE) and Mean Root
Squared Error (MRSE) metrics to evaluate the prediction
models. The evaluations were performed using MAE and
MRSE on test data over all 15 time series. The mean values
of MAE and MRSE over all 15 time series in the dataset are
generally reported.

IV. THE PROPOSED TRAINING EFFORT REDUCTION
METHOD

The idea of a dynamic stopping criteria measure, derived
from the loss value, which would help us determine whether
it makes sense to continue with the training of a NN model,
comes from our previous experience with developing, fine
tuning, and optimizing various more or less complex deep
neural network architectures applied against different domain
problems. Commonly, in such processes various combinations
of different parameters and architecture decisions are being
tested in order to achieve the best possible performance. When
such different parameter settings are being tested, most com-
monly the training loss is being observed during the training
in order to identify whether the trained solution progresses as
expected. Ideally, we would like to see the loss value at the
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beginning of the training process to decrease rather quick and
gaining the decrease momentum towards the middle of the
training process, while at the end the decrease of the loss is
slowed down before it stabilizes, reaching a (local) minimum.
Based on the observation of the loss curve during the training
process, we should be capable to detect whether the current
parameter settings are promising to train the model well or
not. Given the specific characteristics of the loss curve, which
we are pursuing in the process of training a deep NN model,
we would like to be able to assess the expected predictive
performance of a fully trained model even before the full
training is completed, as early in the training phase as possible
and with high reliability.

There are two main factors that commonly indicate a good
training process, which could end up in a well-trained model:

o The absolute loss value, indicating an amount of errors
the model makes on the training data. The lower loss
value generally indicates a more accurate model.

o The trend-line of loss values throughout the training
process. The steepest it is, the better chance the model
has to reach a global minimum.

To reliably determine whether it makes sense to continue
with a specific training process, we need to consider both
factors. The best potential has a model, already showing a
rather good performance (represented by low loss value),
where the improvement is still considerable (steep enough
learning curve). A stagnating low loss will probably not
improve significantly when a model is trained further. On
the other hand, the improvement of a rather poor performing
model has less chance to become an outstanding model as the
improvement of an already good performing model.

For this purpose, we defined a composite measure which
does not only focuses on the single value at the specific
training step (a loss value), but takes into account all the
previous ones and in such manner in early training stages tries
to identify whether some NN architecture and/or parameter
settings are promising or not.

A. Area under normalized loss curve, AUNL

The loss function L is the function that is most often used
to monitor the performance of a trained NN model during the
training process. In order to include preliminary values of the
loss function, in the first step of developing the AUNL metric,
the values of the loss function were normalized using min-max
normalization and mapped to values within the interval [0, 1].
As a result, the normalized value of the loss function in the
selected epoch N L; represents a relative value with respect to
the absolute maximum value of the loss function L and in this
way indirectly includes information about the previous values
of the loss function. Furthermore, by normalizing the loss
values all training runs become directly comparable, although
their absolute loss values might be different.

Since the metric derived in this way does not include
information about the general trend of the loss function values
throughout epochs, the idea of upgrading the metric arose,
which works along the lines of the classification metric of the

average area under the ROC curve. In our case, the area under
the curve calculation method is used to calculate the area under
the normalized loss function [NV L. Formally, the area under the
curve of the normalized loss function N L can be defined as

n—1
1 Yi + Yit1
g -h @)
n—1 P 2

b
AUNL = / NL(z)dx =

where a and b represent the first and the last epoch, y; the
value of VL in the i-th epoch, and h the step expressed as
Zi+1 — ;. In our case, h is equal to 1, since the definition
range of the function NL is equal to DNL = [1, n], and
the points inside DN L are considered to be equidistant, i.e.
h=x;41 —x; =1is valid foreach2 =1, 2, .., n—1. A
graphical representation of the area under the NL curve is
presented in Fig. 2.
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Fig. 2: Graphical representation of the AUNL metric (area
under the normalized loss curve), calculated at the 5-th epoch.

B. Training effort reduction

Once the AUNL metric is defined, we shall define the
procedure of how to (possibly) reduce the effort of training
NN models. When training a complex NN architecture, several
runs of training are performed, each providing a new model.
In the context of HPO, (slightly) different setting of hyper-
parameters is used for training, resulting in models of varying
performance; even when the same setting is used for training,
a non-deterministic nature of the training algorithm allows for
different models.

The basic idea of the proposed training effort reduction
method is to measure and monitor AUNL while training new
models in successive runs. If the currently trained model has
higher value of AUNL at the same epoch as the best trained
model so far, we can reasonably infer that further training
will not result in a better performing model and can thus be
terminated before the maximum number of epochs is reached.
In order to give the training process a possibility to build up a
model, some patience (a number of consecutive epochs before
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AU N L values are compared) is being used. In such a manner,
the total number of epochs used for training are being reduced
by premature termination, thus reducing the overall training
effort. The downside of the proposed approach, however, is
that a possible successful model can be lost by prematurely
stopping the training.

C. HPO with the proposed training effort reduction method

Our proposed training effort reduction method for training
the optimal RNN model is presented in Alg. 1. The method
is based on the RS optimization approach, which provides
different hyper-parameter settings and helps us find the optimal
predictive model — in our case to find the appropriate number
of neurons (LSTM units), dropout rate and batch size to be
used in training the RNN models.

Algorithm 1 HPO approach with the TER method.

M P = Patience

NTR = Number of training runs

AUN Lcyrrent = AUNL for currently trained model
AUN L;J@’)in = Minimal achieved AUNL at j-th epoch
Xeurrent = Current model

Xpest = Best model

MAE..,;rent = MAE of the current model on train data
MAEFEy.s; = MAE of the best model on train data
Initialize Random Search algorithm

while : < NTR do

Obtain new parameter settings S from Random Search

R S A R AT

_
M =2

Initialize X yrren: based on S
13:  while ;7 < Maximum epochs do
14: Train X yyrent for one epoch
15: Calculate AUN L cyyrrent
16: if j%MP == 0 then
17: Calculate AUN Lyrrent }
18: if AUN Leyrrent > AUNLY) then
19: Stop training
20: end if
21: end if
22: j=j+1
23:  end while
24:  Calculate M AFE on train data for X ., rent
25:  if MAFE .urrent < MAE,,;, then
26: MAEmzn = MAEcu'rrent
27: Xpest = Xcurrent
28: AUNLZ()e)st = AUNngrrent
29:  end if
300 =1+ 1

31: end while

As can be seen from Alg. 1, the used RS approach to
optimize the RNN training is repeated for a definite number
of training runs (NTR). In each run, the new solution vector
is obtained from the RS, based on which the current RNN
model is initialized and configured. After the initialization,
the training process begins in which after each number of
completed epochs (i.e. patience, M P) the AUN L metric is

TABLE I: The obtained results for the full training in com-
parison with the proposed training effort reduction method.

metric full training  using the proposed method
MAE 6.385 6.483
RMSE 7.648 7.784
epochs 7,200 3,825
used resources 100.00% 53.125%

calculated and compared with the AUNL value of the best
performing RNN model (according to MAE over train data)
being trained so far. If the AUNL value of the currently
trained model is higher than the AUNL of the best model,
the training run is terminated. After all training runs are
completed, the best performing model according to MAE over
train data is chosen.

V. EXPERIMENTS AND RESULTS
A. Experimental setup

The experiments were conducted on a dataset of 15 house-
hold electricity consumption time series. The first 720 values
(consumption for 720 days) of each time series were used for
training, while the remaining values (from 360 to 1.107 days,
depending on the time series) were used for testing (see Fig. 1).
The window size was set to 30 days. The LSTM models were
trained for (up to) 30 epochs.

B. Results

With the experiment, we wanted to assess two key indicators
— the final predictive performance of the trained model (using
full training or the proposed training effort reduction method),
measured with MAE and RMSE metrics, and the amount
of training resources, measured with the overall number of
epochs spent for training. For this purpose, we performed the
full RNN training over all 15 time series from the prepared
data set of electricity consumption. We performed HPO over
each individual time series using RS, varying three hyper-
parameters: the number of neurons (LSTM units) in each RNN
layer, dropout rate and batch size. In each run, we trained the
RNN for 30 epochs. As a final result, we used the model that
achieved the highest MAE value over the training data (for
each time series). For comparison, we then used the proposed
training effort reduction method on the same training runs,
which means that we stopped the training of an individual
run prematurely (before the execution of all 30 epochs) in the
case when the AUNL value was worse (i.e. higher) than the
AU N L value in the best trained model so far (see an example
in Fig. 3). Also in this case we used as the final result the RNN
model that achieved the highest MAE value over the training
data (for each time series).

The obtained results are summarized in Table I. We can
see that in the case of full training the MAE was 0.098
kWh (or 1.5%) better than when the proposed training effort
reduction method was used (1.7% better in the case of RMSE).
However, using the proposed training effort reduction method
the amount of needed resources was nearly halved (only
53.125% of resources were spent).
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Fig. 3: Two models being trained in two runs. As the model
in run #2 (green) achieved better AUNL value (at Sth epoch),
the training continues; otherwise it would be terminated.

VI. CONCLUSION

With increasing demands for the use of complex ML
models, the consumption of training resources also increases
tremendously. In order to reduce the carbon footprint of Al,
various attempts to adapt the NN training appear in the litera-
ture. Based on experience with optimization of deep NNs, we
proposed in the paper a new training effort reduction method
based on the calculation of area under the normalized loss
curve. According to the results of the conducted experiment,
the proposed method managed to reduce the consumption of
computational resources by almost half, while the predictive
performance of the trained models deteriorated only mini-
mally. When used in a real-world setting, this could save us a
lot of time and energy while bringing us significant financial
benefits.

Although the presented training effort reduction method
is a simple and quite naive approach to (deep) NN training
optimization, it nevertheless addresses two key factors —
optimization of predictive performance while simultaneously
reducing the consumption of computational resources. With
the increasing awareness of the importance of sustainable use
of energy, we want to upgrade the presented approach in
the future to further reduce the computational complexity of
training complex ML models and nature-inspired algorithms
to ensure the standards of Green Al
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