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Abstract—This paper presents a novel approach for processing
cycling data from TCX files using a custom-built Julia library,
TCX2Graph.jl. The method includes constructing property
graphs from GPS track points and detecting overlapping path
segments. These detected overlapping points are enriched with
track point metrics, enabling detailed analysis of cycling sessions.
The proposed approach processes large datasets efficiently, pro-
viding insights into overlapping paths and athlete performance.
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I. INTRODUCTION

Cycling, as both a recreational activity and a competitive
sport, has been revolutionized by advancements in wearable
technologies and Global Positioning System (GPS) devices.
Athletes rely on data from training sessions (e.g., speed,
distance, heart rate) to optimize performance. Training Center
XML (TCX) files, a common format, provide insights into
training effectiveness, track patterns, and areas for improve-
ment.

Recent advancements, such as digital twins, have further
improved athlete performance monitoring by creating virtual
models that mirror real-world conditions [5]. Building on these
innovations, this study focuses on analyzing cycling data with
property graphs to detect overlapping paths and enrich these
segments with performance metrics.

With the growing use of wearable fitness devices, vast
amounts of data are generated daily, especially in formats
such as TCX and GPS Exchange (GPX) format, which store
detailed records of workouts, including GPS coordinates,
heart rates, and other psychological metrics. These data hold
significant potential for deeper insights, but their unstructured
format and complexity pose challenges for advanced analysis.

The purpose of the paper is to represent the collection of
the TCX files in the form of property graphs, that serve us
for analysis of the performances of the athletes during the
training sessions, which can happen on the same place. The
property graphs consist of nodes and edges, including multiple
attributes/properties. These are represented as directed multi-
graphs, whose nodes/edges are attached by the entities of
the corresponding data structures. Typically, the properties are
included in the form of a key-value. This representation allows
us to detect path overlaps inside the TCX file simply.
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Indeed, athletes producing the TCX files during the training
sessions can overcome the same racetracks more times. In that
case, the path overlaps are detected in the corresponding TCX
files. This phenomenon has a crucial impact on detecting the
behavior of the athlete in sports training. For instance, the
athlete can overcome a specific part of the course, either at the
beginning or the end of the training session. The physiological
influence on the athlete’s stress can be very different in both
cases. In line with this, the characteristics of the athlete’s
behavior need to be indicated in the corresponding TCX files,
i.e., path overlap detection and monitoring the performances
of the athlete during the specific path. The athlete’s behavior
has a big influence on predicting the amount and intensity of
the sports training session.

The contributions of this paper are as follow:

« to present a novel approach to reading, processing, and
analyzing TCX files through a custom-built algorithm
implemented in the Julia programming language called
TCX2Graph.jl,

o to detect path overlaps inside the TCX files,

« to conduct two Case Studies, in order to verify a power
of the proposed method,

o to use the mined knowledge to predict the athlete’s
behavior more accurately.

Obviously, the last paragraph is not the subject of the paper,
but is left as an opinion for further work.

The rest of the paper is structured as follows: Section
IT covers the materials and methods, including description
of TCX file formats, property graph construction, and path
overlap detection. Section III details the proposed method
and its implementation in the TCX2Graph.jl library. Section
IV presents the experimental work, and corresponding per-
formance analysis. Finally, Section V concludes with key
contributions and outlines potential research directions.

II. MATERIALS AND METHODS

The purpose of this section is to present the data sources that
were used in the developed algorithm, and the methods that
were employed to extract insights from the data. We describe
the data preprocessing steps, the construction of the property
graph from the TCX data, and the algorithm used to detect
path overlaps.
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A. Format of the TCX files

The data used in the proposed algorithm consist of TCX
files developed by Garmin for recording sports activities. The
TCX files are employed by GPS-enabled fitness devices to
store detailed workout data, such as time, distance, speed, heart
rate, and cadence, in the XML format, making them flexible
for various types of activity tracking [6, 3].

Each TCX file contains session data recorded at intervals
(track points), including laps and GPS-stamped performance
metrics, where key elements include:

o Activity: the overall session container, recording the sport

type and metadata.

o Laps: segments of the session with data like time, dis-

tance, and heart rate.

o Track points: moment-specific records, including GPS

coordinates, altitude, heart rate, cadence, and speed.

These TCX files, representing multiple cycling sessions,
provide both performance statistics (speed, heart rate and
others) and precise geographical information, allowing for
advanced spatial analysis of overlapping paths. Each track
point is georeferenced, enabling the comparison of routes and
the detection of intersections between paths.

B. Property graphs
The property graph is defined as a 7-tuple:

<N7A,K7V7a,/$,7r>, (1)

where N is a set of nodes/vertices, A is a set of directed
edges/arcs, K a set of keys in the form of attributes/properties,
V' a set of values attached to the keys, a : A — N x N is
a label function defining the multi-graph property, « a binary
relation over (AU N) and K, 7 : kK — V is a partial function
providing values for the properties of the nodes and arcs which
are including them.

III. THE PROPOSED METHOD

Path overlap detection in property graphs is a critical
challenge in analyzing the routes or paths followed by athletes.
When multiple sessions of cycling are recorded and stored in
TCX files, these paths can sometimes overlap. This overlap
may occur when an athlete traverses the same route repeatedly
in multiple sessions, or crosses an identical segment.

The problem can be described as identifying segments in
the property graph where two or more paths share a common
nodes (GPS track points), or are spatially close to each other
within a given tolerance (accounting for GPS inaccuracies).
The challenge is to query this graph efficiently to detect
overlapping segments across different sessions or routes, while
accounting for possible deviations in the recorded paths due
to GPS drift.

The main goal of path overlap detection is to recognize
accurately when different rides follow the same or similar
physical routes, and then analyze the performance metrics
(such as speed, heart rate, and cadence) across these shared
segments. This helps provide insights into an athlete’s consis-
tency, identify performance patterns, and account for external

factors like wind, terrain, or fatigue, that might affect perfor-
mance in overlapping segments.
The proposed method consists of three steps as follows:

o parsing of the TCX files,
« constructing the property graph,
o path overlap detection.

The mentioned steps are presented in detail in the remainder
of the paper.

A. The effective parsing of the TCX files

The first step in our developed algorithm, called
TCX2Graph. jl, is the efficient reading and parsing of the
TCX files. We implemented a custom solution to process these
files using the TCXReader. j1 library, which we developed
in the Julia programming language [4].

The TCX data extracted by TCXReader. j1 is organized
into three primary structures: TCXActivity, TCXLap, and
TCXTrackPoint. These structures facilitate detailed parsing
and analysis of the workout data, as follows:

o TCXActivity: The top-level structure represents the en-
tire workout session, containing metadata such as sport
type and a unique session ID. It stores multiple TCXLap
structures with aggregated metrics like total time and
distance.

o TCXLap: Divides each activity into laps, storing data
like start time, distance, speed, and heart rate. Each lap
contains multiple TCXTrackPoint records for tracking
performance over time.

o TCXTrackPoint: The most granular structure, represent-
ing specific moments in the workout, capturing perfor-
mance metrics, and GPS coordinates (Listing 1).

Listing 1. The TCXTrackPoint struct from TCXReader. jl
struct TCXTrackPoint
time :: DateTime
latitude :: Union{Nothing , Float64}
longitude :: Union{Nothing , Float64}
altitude_meters :: Union{Nothing , Float64}
distance_meters :: Union{Nothing , Float64}
heart_rate_bpm :: Union{Nothing, Int}
cadence :: Union{Nothing, Int}
speed :: Union{Nothing , Float64}
watts :: Union{Nothing , Int}
end

In addition to these primary structures, TCXReader. jl
employs TCXAuthor and DeviceInfo to capture metadata
related to the device and author of the TCX file. However,
the core analysis focuses on TCXActivity, TCXLap, and
TCXTrackPoint, which, together, form the backbone of
the TCX data extraction process, enabling further analysis of
overlapping segments in the cycling routes.

B. Constructing the property graph

After reading and parsing the TCX files, the next step
in our approach is the construction of a property graph to
represent the cycling data from multiple training sessions. This
property graph, generated using the Graphs library [7] in

000490



SAMI 2025 ¢ IEEE 23rd World Symposium on Applied Machine Intelligence and Informatics « January 23-25 2025 « Stara Lesna, Slovakia

Julia within our TCX2Graph. j1, organizes the GPS points
from the cycling sessions into vertices, with edges connecting
consecutive points along each session’s path. The property
graph serves as an effective means to store and manage
the various track point-related metrics. The property graph
consists of three primary components:

« A simple graph: This graph represents each GPS point as
a vertex, and the edges connect consecutive points from
the same session, preserving the path structure.

o A dictionary of GPS data: This dictionary stores de-
tailed properties for each vertex, such as latitude, longi-
tude, and other track point-specific metrics extracted from
the TCX files.

« A vector of paths: This vector holds the ranges of vertex
indices corresponding to each individual session, allowing
for easy tracking of the paths across multiple TCX files.

In constructing this property graph, the GPS points are
processed by first adding each point as a vertex, followed by
connecting consecutive points with edges, thus forming the
paths. Simultaneously, the GPS properties are stored in the
dictionary for fast access during further analysis.

While the property graph is crucial for organizing and
accessing the GPS and track point data, it is not used directly
for the identification of overlapping segments between paths,
as performing spatial searches on a graph structure would
be computationally expensive. Instead, we utilized a KDTree
library [8] for efficient spatial querying, to detect overlapping
segments across different paths. Once overlapping segments
are identified, the property graph is then employed to retrieve
the associated metrics from the GPS points within those
segments.

Figure 1 shows a graphical visualization of the property
graph constructed from the TCX data, with each path repre-
senting a cycling session from the input files.

Path 1
Path 2
Path 3
Path 4
Path 5

46.450

46.425

46.400

46375

46.350

15.65 15.70 15.75 15.80 15.85

Fig. 1. Graphical visualization of property graph constructed from the TCX
data.

In the next section, we detail the process of detecting
overlapping segments using a KDTree, and how the prop-

erty graph is used to enrich the overlapping segments with
additional metrics.

C. Path overlap detection

After constructing the property graph, the next step in our
algorithm is the detection of overlapping segments across
different cycling paths. Given the inherent inaccuracies in GPS
data, cyclists following the same physical route may have
slight variations in the recorded locations. These variations
necessitate a method that accounts for this inaccuracy when
identifying overlapping segments. Our approach leverages a
KDTree [8] structure to manage spatial queries efficiently,
and implement a tolerance-based method to detect overlaps.

A KDTree, which is a data structure optimized for nearest-
neighbor queries, allows for efficient spatial searches within
our GPS dataset. This data structure has proven effective for
high-dimensional data in real-time applications [10, 1, 9]. We
chose the KDTree library in Julia due to its efficiency and
active maintenance [8]. By organizing the GPS points into
this tree, we can identify points that are spatially close to
each other across different paths quickly. The primary func-
tion, find_overlapping_segments_across_paths
(see Algorithm 1), identifies overlapping segments by com-
paring each point in a path to nearby points in other paths.
A tolerance radius is applied, to accommodate the slight
deviations that occur due to GPS inaccuracy. This tolerance
ensures that paths that follow the same route but have minor
spatial offsets are still recognized as overlapping.

For each pair of paths, the algorithm checks whether points
from different paths fall within each other’s tolerance radius.
If points fall within this radius for a sufficient consecutive
number of points, they are considered part of an overlapping
segment. The algorithm updates the mapping of overlapping
segments, ensuring that only significant overlaps are recorded.

Figure 2 provides a graphical representation of how toler-
ance is applied when detecting overlapping paths, highlighting
the flexibility in identifying common routes even in the pres-
ence of minor GPS discrepancies.

—— Cyclist Path 1
—— Cyclist Path 2

Tolerance Radius
46.434

46.432

46.430

46.428

15.752 15.754 15.756 15.758 15.760 15.762

Fig. 2. Identification of overlapping segment with tolerance.
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Algorithm 1 find_overlapping_segments_across_paths
Require: all_gps_data, paths, kdtree,
min_segment_length, segment_gap_tolerance
Ensure: Return a list of overlapping segments
1: Initialize overlap_segments and segment_map
2: for all path_idx in paths do
3: Initialize segment_start, current_segment, gap_count,
overlapping_paths
4 for all idx in path do
5 gpsl < gps_to_point(all_gps_data[idx])
6: candidates < inrange(kdtree, gpsl, max_gap)
7
8
9

max_gap,

found_overlap <— False
for all candidate_idx in candidates do
if candidate_idx is not in path then

10: Continue

11: end if

12: for all other_path in paths do

13: if candidate_idx in other_path and
is_same_location(...) then

14: found_overlap <— True, gap_count < 0

15: Append idx to current_segment, update
segment_map

16: end if

17: end for

18: end for

19: if not found_overlap then

20: Increment gap_count

21: if gap_count > segment_gap_tolerance and
valid segment then

22: Append segment to overlap_segments, reset
variables

23: end if

24: end if

25: end for

26: if valid segment at end of path then

27: Append segment to overlap_segments

28: end if

29: end for

30: return overlap_segments

This approach, combined with the KDTree, ensures that
the path overlap detection process is computationally efficient,
even when processing large datasets, such as, for instance, the
462 TCX files as used in our tests.

Once the overlapping segments are identified, we use the
previously constructed property graph to extract and enrich
the overlapping segments with additional track point metrics
such as speed, heart rate, altitude, and cadence (see Listing 1
for a full list of metrics). This data extraction step is crucial
for enabling a more in-depth analysis of cyclist performance
across these shared segments. These enriched overlapping seg-
ments are then prepared for further analysis, such as generating
transactions for use in Numerical Association Rule Mining,
which focuses on mining numerical relationships between
track point metrics. The Numerical Association Rule Mining

methodology represents a future goal in our research, which
is to perform advanced pattern discovery in the cycling data.

IV. EXPERIMENTS AND RESULTS

The goal of this experimental work is to evaluate the
performance of the proposed path overlap detection algorithm
in identifying overlapping cycling segments from TCX files.
Specifically, we aim to assess the algorithm’s efficiency in
processing multiple TCX files, detecting path overlaps, and
providing insightful performance metrics for athletes. The
focus is on using property graphs and KDTree spatial queries
to extract overlapping paths efficiently, and enrich them with
cycling performance data.

The  algorithm, implemented in  Julia  using
TCX2Graph.jl, was tested on a MacBook Pro M3
(18GB RAM)(Table I) with 462 TCX files [2]. Of these, five
files recorded by the same cyclist were selected for analysis,
revealing 39 overlapping segments, with two segments chosen
for detailed study.

TABLE I
PERFORMANCE METRICS FOR OVERLAP DETECTION.
Metric Value
Threads 5
Runtime (s) 1.03
Allocations (M) 27.52
Memory (MiB) 870.37

For further analysis and experiment, we selected two seg-
ments manually:

« Segment 30, which has been traversed across five sepa-
rate rides.

o Segment 18, which has been traversed across three
separate rides.

The manual selection of files enabled verification of con-
ditions during the rides, such as stronger winds reported on
Strava, which explained slower performance on overlapping
paths. The algorithm accurately identified all overlapping seg-
ments in the selected files, with no false positives or negatives.
Key statistics (e.g., minimum, maximum, mean, median, and
Standard deviation (Stdev)) for metrics like speed, Heart Rate
(HR), cadence, and time provided insights into the cyclist’s
performance consistency and physiological response.

A. Results

In order to show the correctness of our Research Questions
set at the beginning of the experimental work, two Case
Studies were conducted as follows:

o Case Study 1: Path overlap detection from a property
graph consisting of five sport training activities.

o Case Study 2: Path overlap detection from a property
graph consisting of three sport training activities.

In the remainder of the paper, both Case Studies are illustrated
in detail.
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1) Case study 1: Research Question 1 (RQ-1) in Case study
1 was set as: “ The cyclist’s performance on overlapping
segments is impacted significantly by external factors such
as wind, resulting in a higher variance in speed and heart
rate across multiple rides.”. In line with this, the cyclist rode
the path denoted as Segment 30 five times across different
sessions. Table II presents the aggregated statistics for each
metric.

TABLE 11
PERFORMANCE METRICS FOR SEGMENT 30 AFTER FIVE RIDES.

Metric Min Max Mean Median Stdev

Speed 22.5 25.2 24.16 24.8 1.19
[km/h]

HR 143 165 151.6 147 9.48
[bpm]

Cadence 79 86 83.4 85 2.88
[rpm]

Time 1,539 1,724 1,607.6 1,563 81.43
[sec]

Figure 3 shows the visualization of the overlapping Seg-
ment 30. Thus, Table III provides the observed characteristics

A

46.450
46.425
46.400
Paths involved: 5, 4, 2, 3, 1

46.375

46.350

TABLE III
CHARACTERISTICS OF THE OBSERVED SEGMENT 30.

Characteristic Value

Segment ID 30

Distance 10,768.57 meters
Ascent 34.00 meters
Descent 57.00 meters
Max Gradient 20.19 %
Average Gradient 2.99 %

the cyclist’s Strava data. Specifically, the rides that showed
slower speeds corresponded to reports of stronger winds.

The standard deviation in time Stdev = 81.43 sec also
indicates variability in how long it took the cyclist to complete
this segment, with a range of approximately three minutes
between the fastest and slowest rides.

B. Case study 2

Research Question 2 (RQ-2) in Case study 2 was set as:
“The cyclist’s performance on overlapping segments is less
affected by external factors, resulting in lower variance in
key performance metrics Speed, HR, and Cadence across
rides.”. In line with this, the cyclist rode the path denoted
as Segment 18 three times across different sessions. Table IV
presents the aggregated statistics for each metric, while Fig-

TABLE IV
PERFORMANCE METRICS FOR SEGMENT 18 AFTER THREE RIDES.
Metric Min Max Mean Median Stdev
Speed 21.5 22.3 21.93 22 0.40
[km/h]
HR 162 166 163.67 163 2.08
[1bpm]
Cadence 75 81 78.33 79 3.06
[rpm]
Time 910 945 926.67 925 17.56
[sec]

L L L L L
15.65 15.70 15.75 15.80 15.85

Fig. 3. Graphical visualization of overlapping Segment 30 in the cycling
routes.

of Segment 30, including distance, ascent, descent, maximum
gradient, and average gradient.

An analysis of the results for Segment 30 revealed a
consistent cycling performance with a relatively small standard
deviation in speed (Stdev=1.19 km/h), suggesting that the
cyclist maintained a steady pace across the five rides. The
heart rate variability was more pronounced, with a range
HR € [143,165] bpm, possibly reflecting the varying lev-
els of exertion or fatigue. The variance in heart rate (i.e.,
HR = 89.8 bpm) suggests that external factors, such as wind,
influenced the cyclist’s performance, which we confirmed via

ure 4 shows the visualization of overlapping segment 18,
Table V provides the observed characteristics of Segment 18,
including distance, ascent, descent, max gradient, and average
gradient.

As is evident from the results in Table V, the segment 18
showed a more stable performance across the rides. The
cyclist’s speed and cadence in Table IV were highly con-
sistent, with low standard deviation in the metrics Speed
and Cadence (i.e., Stdev = 0.40 km/h for Speed and
Stdev = 3.06 rpm for Cadence). This suggests that the cyclist
was able to maintain a similar level of effort across all the
rides. The heart rate shows slightly more variability, but the
range HR € [162,166] bpm was small indicating a relatively
uniform physiological response. The standard deviation in time
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Fig. 4. Graphical visualization of overlapping Segment 18 in the cycling

routes.

TABLE V
CHARACTERISTICS OF THE OBSERVED SEGMENT 18.

Characteristic Value

Segment ID 18

Distance 5,243.09 meters
Ascent 50.20 meters
Descent 16.60 meters
Max Gradient 18.55%
Average Gradient 2.91%

was also low (i.e., Stdev = 17.56 sec) suggesting that the
cyclist’s performance on Segment 18 was more predictable
and consistent compared to Segment 30.

In summary, the results support both set research questions
(i.e., RQ-1 and RQ-2), as Segment 30 exhibited higher vari-
ance in both speed and heart rate, likely due to varying wind
conditions, while Segment 18 demonstrated more consistent
performance.

V. CONCLUSION

This paper introduced a novel approach for process-
ing cycling data from TCX files using the Julia-based
TCX2Graph. jl library. We demonstrated how to construct
property graphs from GPS track points and detect overlap-
ping segments in cycling routes using a KDTree for spatial
querying.

In our experimental study, we selected two overlapping
segments manually from a subset of five TCX files, all
provided by the same cyclist. Detailed performance metrics,
including Speed, HR, Cadence, and Time, were calculated for
each segment. The results showed significant variability in
Segment 30, where external factors such as wind impacted

the cyclist’s performance, as evidenced by the variance in
speed and heart rate. In contrast, Segment 18 exhibited more
consistent performance across all the metrics, confirming our
research questions that external factors had less of an influence
on this segment. Analyzing overlapping segments and variance
provided valuable insights into cyclist behavior, highlighting
the impact of external conditions on performance.

Future work would explore the integration of the extracted
performance data into advanced transaction modeling, such as
Numerical Association Rule Mining, to discover significant
patterns and rules in cycling performance. To improve the
generalizability and robustness of the results, future research
would expand the dataset to include information from multiple
cyclists, diverse geographical regions, and varied cycling con-
ditions. In general, the more predictive modeling that considers
also external factors, like terrain and weather, could results
in a universal framework for evaluating and forecasting sport
performance using TCX files.
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